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Abstract 

 
SYSTEM HEALTH MONITORING USING MULTIPLE- 

MODEL ADAPTIVE ESTIMATION TECHNIQUES 

 

Stanley Ryan Sifford, Ph.D. 

 

The University of Texas at Arlington, 2016 

 

Supervising Professor: Kamesh Subbarao  

Monitoring system health for fault detection and diagnosis by tracking 

system parameters concurrently with state estimates is approached using a new 

multiple-model adaptive estimation (MMAE) method.  This novel method is called 

GRid-based Adaptive Parameter Estimation (GRAPE).  GRAPE expands existing 

MMAE methods by using new techniques to sample the parameter space.  GRAPE 

expands on MMAE with the hypothesis that sample models can be applied and 

resampled without relying on a predefined set of models.  GRAPE is initially 

implemented in a linear framework using Kalman filter models.  A more 

generalized GRAPE formulation is presented using extended Kalman filter (EKF) 

models to represent nonlinear systems.  GRAPE can handle both time invariant and 

time varying systems as it is designed to track parameter changes. 

Two techniques are presented to generate parameter samples for the parallel 

filter models.  The first approach is called selected grid-based stratification (SGBS).  
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SGBS divides the parameter space into equally spaced strata.  The second approach 

uses Latin Hypercube Sampling (LHS) to determine the parameter locations and 

minimize the total number of required models.  LHS is particularly useful when the 

parameter dimensions grow.  Adding more parameters does not require the model 

count to increase for LHS.  Each resample is independent of the prior sample set 

other than the location of the parameter estimate.  SGBS and LHS can be used for 

both the initial sample and subsequent resamples.  Furthermore, resamples are not 

required to use the same technique.  Both techniques are demonstrated for both 

linear and nonlinear frameworks. 

The GRAPE framework further formalizes the parameter tracking process 

through a general approach for nonlinear systems.  These additional methods allow 

GRAPE to either narrow the focus to converged values within a parameter range or 

expand the range in the appropriate direction to track the parameters outside the 

current parameter range boundary.  Customizable rules define the specific resample 

behavior when the GRAPE parameter estimates converge.  Convergence itself is 

determined from the derivatives of the parameter estimates using a simple moving 

average window to filter out noise.  The system can be tuned to match the desired 

performance goals by making adjustments to parameters such as the sample size,  

convergence criteria, resample criteria, initial sampling method, resampling 

method, confidence in prior sample covariances, sample delay, and others. 
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CHAPTER 1  

Introduction 

This chapter presents the relative background for the topics of fault 

diagnosis and parameter estimation.  The contents form the foundation on which 

GRid-based Adaptive Parameter Estimation (GRAPE) is built.  GRAPE explores 

the topic of monitoring system health for fault detection and diagnosis through new 

multiple-model adaptive estimation framework to concurrently estimate system 

parameters and system states.  The capability of estimating system parameters, 

rather than assuming their values are constant, provides a measure of the system 

health, because the system parameters define the system behavior. 

The chapter begins by identifying relevant background and motivation for 

study.  The research problem statement is then provided.  Following a high-level 

literature review of Fault Diagnosis and Detection (FDD), an overview of FDD is 

provided.  Then a brief introduction to Fault Tolerant Control is covered.  Relevant 

topics of state and parameter estimation are introduced.  The chapter concludes with 

the objectives of the dissertation research and a summary of the organization of the 

remaining chapters.   

1.1 Background and Motivation 

The study of system health is motivated by the desire to maintain adequate 

control of the system to prevent a failure.  All types of designed systems are 

susceptible to faults.  The system could be a simple aerospace, chemical, electrical, 
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industrial, financial and mechanical or any other system designed to perform some 

type of action dependent on the system input.   A fault may degrade the performance 

of a system or cause a complete failure.  The fault could potentially put lives in 

danger.  Therefore, methods for detecting and handling a potential fault are critical. 

The complexity of the methods employed to detect and handle faults are 

directly proportional to the associated risk of a fault.  A low-risk application may 

just turn on a warning light such as a low battery charge warning on the dashboard 

of a car.  A high-risk application could be a complicated system to shut down a 

process at a petroleum refinery to prevent an massive financial loss or even an 

explosion.  Somewhere in the middle could be a fault-tolerant control process that 

accommodates minor control actuator failures in aircraft allowing the pilot to safely 

land a plane. 

A systematic approach must be used to evaluate nature of a system and 

whether or not it is functioning properly.  FDD is presented through the approach 

taken by Blanke et al. in [1] and Isermann in [2].  Adaptive parameter estimation, 

specifically the multiple-model adaptive estimator, will be presented as a way to 

identify the current system parameters concurrently with the state estimation.  The 

techniques developed can be applied to various components of the system shown 

in Figure 1-1.  For the purpose of this research, the focus is on the system 

parameters of the plant (amplifier, actuator and load in Figure 1-1).  The process 

and measurement noise characteristics are assumed to be zero mean with a specific 



www.manaraa.com

 

3 
 

This document does not contain technology or Technical Data controlled under either the U.S. International Traffic in 
Arms Regulations or the U.S. Export Administration Regulations. 

variance.  Initially, simple systems such as the spring-mass-damper will be used to 

illustrate concepts that will be applied to a wider scope of linear problems.  These 

concepts are later expanded into a more general nonlinear approach. 

 

Controller Amplifier

Sensor

Actuator
& Load

x
(output)

w ~ N(0,Q)
(process noise)

Process

+

+

v ~ N(0,R)
(measurement noise)

(measurement)
y

+

-
Sensoru

(input)

 
 

Figure 1-1 Typical system model 
 

1.2 Research Problem Statement 

The motivation of this research is to develop methods for concurrent 

parameter and state estimation of dynamic systems in the framework of FDD.  The 

specific purpose is to identify system behavior from the input and output 

measurements using the new MMAE approach called GRAPE.  The majority of the 

research effort was focused on developing and testing the GRAPE algorithm.  

GRAPE is a derivative of existing MMAE approaches.  GRAPE provides a novel 

approach to use MMAE techniques for observing system parameters and their 

relationship to predefined regions of behavior.  The GRAPE framework covers both 

linear and nonlinear systems.  GRAPE provides a tool for fault detection.  It can be 

extended to aid the diagnosis of a faults.   
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This research and development of GRAPE makes three primary 

contributions to FDD and MMAE techniques in general. 

 The first contribution is the adaptation of MMAE to a formalized framework 

that supports system health monitoring.  A parameter range is defined with 

limits for each parameter.  This forms the upper and lower bounds of where 

the parameter is explored.  The current estimate range reflects the location of 

latest parameter estimate with a minimum and maximum bound within the 

parameter estimate range.  These definitions coupled with a modified MMAE 

approach support concurrent parameter and state estimates within the FDD 

framework. 

 The second contribution is the way GRAPE handles MMAE model 

resampling.  Resampling deviates from other research efforts by defining 

behaviors of resampling and then performing a resample independent of any 

predefined model set.  Each resampled model set represents an entirely new 

estimate range for the parameters based on the location of the previous 

parameter estimate. 

 The third contribution is the method of sampling the parameter space.  

Two sampling methods are provided within the GRAPE framework.  The first 

method, called Selected Grid-Based Sampling (SGBS), breaks the parameter 

space into uniformly distributed strata.  A region within the overall parameter 

range is initially selected and processed through the algorithm to focus on the 
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region with the current parameter estimate.  The second method, called Latin 

Hypercube Sampling, uses a Monte Carlo/design of experiment method to 

sample the same parameter range randomly with the purpose of minimizing 

the number of samples models required. 

GRAPE was developed for the purpose of studying system health, but the 

framework is applicable to other uses where MMAE can be applied.  The second 

and third contributions add to the current state of art for MMAE in general. 

1.3 Fault Detection and Diagnosis Literature Review 

Fault detection and diagnosis (FDD) is a broad field that has been recently 

expanded to cover many areas of industry.  Early FDD is critical to minimize the 

effects of plant or process downtime, extend the life of equipment, provide a safe 

environment and reduce manufacturing costs.[3]  FDD ranges from simple limit 

checking of measurements to complicated analysis of large-scale processes.[3] 

There are many researchers and authors focused on the basic methodologies 

that have texts that are often referenced.  Three have shown up often in the 

literature.  Isermann’s Fault-Diagnosis Systems [2] is widely referenced. The 

Blanke et al. text Diagnosis and Fault-Tolerant Control [1] is also cited often.  J. 

Chen and R.J. Patton are other authors often cited.  One such example is their text 

Robust Model-Based Fault Diagnosis for Dynamic Systems [4].  



www.manaraa.com

 

6 
 

This document does not contain technology or Technical Data controlled under either the U.S. International Traffic in 
Arms Regulations or the U.S. Export Administration Regulations. 

The FDD literature spans many professional organizations including the 

Association for Computing Machinery (ACM), the American Institute of 

Aeronautics and Astronautics (AIAA), the American Society of Mechanical 

Engineers (ASME), and the Institute of Electrical and Electronics Engineers 

(IEEE).  It also covers many science, technology, engineering and mathematic 

publications.  The literature is too vast to summarize in just one document.  An 

early survey can be found from Stengel in [5].  In 1997, Patton provided a summary 

of the technology of the time in [6].   The following paragraphs provide summaries 

extracted from two more recent surveys by Venkatasubramanian et al. (three-part 

series [7-9]in 2003) and Miljković ([3] in 2011). 

FDD is of particular interest to petrochemical industries and chemical 

engineering.  Venkatasubramanian et al. [7] describe the twenty billion dollar 

annual loss within the petroleum industry due to abnormal events.  FDD is a central 

component of abnormal event management (AEM) which is the “timely detection, 

diagnosis and correction of abnormal conditions of faults in a process.”  Early FDD 

is important to prevent productivity loss.[7]  Venkatasubramanian et al. present a 

three-part discussion of FDD in [7-9], dividing the area of study into quantitative 

models, qualitative models and process history approaches respectively.  Figure 1-2 

represents the diagnostic method classifications summarized in [7]. Reference [9] 

concludes with a discussion of integrating FDD methods into hybrid approaches to 

overcome limitations of individual strategies. 
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Figure 1-2 Classification of diagnostic algorithms (adapted from [7]) 
 

Miljković provides another survey in [3] reiterating the need for early FDD 

in “high-cost and safety-critical processes.”  Miljković’s paper divides the fault 

detection methods into the methods and categories listed in Table 1-1. 

Table 1-1 Miljković’s overview of fault detection methods  
(list extracted from [3]) 

A. Data Methods and Signal Models 
 Limit checking and trend checking 
 Data analysis (PCA) 
 Spectrum analysis and parametric models 
 Pattern recognition (neural nets) 

B. Process Model Based Methods 
 Parity equations 
 State observers 
 Parameter estimation 
 Nonlinear models (neural nets) 

C. Knowledge Based Methods 
 Expert systems 
 Fuzzy logic 

 

Miljković states that until the “early 1990s most research and development 

in fault detection was limited to nuclear power plants, aircraft, process plants, the 

automobile industry and national defense.” FDD is now established in many 

industries.[3]  Some of the major areas are summarized in Table 1-2.  This table 
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originated from Miljković’s ten application areas.  The table has been augmented 

with literature references covering a wide range of fields representing a sample of 

available applications.  The list is by no means exhaustive. 

The focus of this research is within quantitative model-based methods 

shown in Figure 1-2.  The MMAE method used to evaluate system health can be 

further classified as parameter estimation in Table 1-1.  GRAPE performs 

concurrent estimation of the system states and parameters.  The current value of 

each are used to evaluate the system health against a predefined set of behavior. 
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Table 1-2 Areas using FDD within sample literature 
 Actuators [10-22] 
 Aircraft [23]  
 Automotive Systems 
 Bearings and Machinery 
 Chemical Process [7-10]  
 Communications [24]  
 Computer Networks [11] 
 Crack Propagation [25]  
 Electrical Motors [26] 
 Electromechanical Systems [27] 
 Gas Turbines  
 Heating, Ventilation, Air Conditioning [28] 
 Rotating Machine and Engines [29] 
 Manufacturing 
 Medical/Biological [30-33] 
 Power Systems/Supplies [34] 
 Pumps 
 Robotics [35, 36] 
 Sensors [20, 37, 38] 
 Structural [20, 39, 40] 
 Steam Turbines 
 Vibration [41] 
 Wind Turbines [42] 
 Unmanned Vehicle Systems [10, 20, 43-45] 

 
1.4 Overview of Fault Detection and Diagnosis 

In this section, the focal concepts of FDD are expanded.  The definitions of 

fault, failure and malfunction are covered first.  Then the concepts of system 

behavior and parameter space are introduced.  An introduction to fault tolerant 

control will be covered in section 1.5. 
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1.4.1 Faults, Failure and Malfunction 

A fault is defined as something that changes the behavior of a system so that 

the system no longer satisfies its purpose.  The change can be internal such as a 

component failure or an external change such as ambient conditions.  Furthermore, 

the fault could be an actual error in the system design that may go undetected until 

a specific operating condition is reached.   

For the purpose of this research, a fault is a system change that produces an 

undesired system response.  This definition follows Blanke et al.’s description of a 

fault as a deviation for the dynamical system structure or system parameters from 

the nominal situation.[1]  The system change may be a result of changes to the 

system parameters which are coefficients or related to the system model.  The 

parameters may be constant for time-invariant systems or varying with time for 

time-variant systems.  A parameter change to a value outside a predefined 

acceptable tolerance will indicate a fault.  The system response is evaluated through 

the measurement process.  Furthermore, an input may be outside of the acceptable 

input range and generate a fault.  For the purpose of this research, the input is 

assumed to be bounded within acceptable levels for the system of interest. 

 
Figure 1-1  illustrates a simple linear system model.  The system parameters 

typically are a subset of the coefficients composing the system matrix A.  System 

parameters, , may also include the variance of the process noise and measurement 
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noise.  The noise is typically white, zero mean Gaussian.  Its characteristics are 

summarized in the notation w~N[0,1], where N means normal or Gaussian, 0 is the 

mean and 1 is the variance (or square of the standard deviation).  For the techniques 

of this research, the system does not need to have a linear constraint.  The 

framework will work on all classifications of systems shown in Figure 1-3 

including the general nonlinear time varying system.  The necessary framework for 

the system model is provided in section 2.1. 

Nonlinear, Time Varying Systems (NTV)

Nonlinear, Time 
Invariant (NTI)

Linear, Time 
Varying (LTV)

Linear, Time 
Invariant (LTI)

 
Figure 1-3 Classification of dynamic systems (adapted from [46]) 
 

Blanke et al. [1] further distinguish faults into types and classifications.  The 

major types are additive or multiplicative shown in Figure 1-4.  Additive faults 

enter the model equations through superposition or addition.  Whereas 

multiplicative faults have a scaling effect.   
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y(t) = u(t) + f(t)
(output)

u(t)
(input)

f(t)
(fault)

 
(a) additive fault 

 
(b) multiplicative fault 

 

Figure 1-4 Additive and multiplicative faults (adapted from [3]) 
 

There are three main classifications to faults: plant faults, sensor faults and 

actuator faults as shown in Figure 1-5.  Plant faults change the dynamical 

input/output properties of the system.  Sensor faults can generate erroneous sensor 

readings.  For actuator faults, the plant properties are not affected, but the influence 

of the controller on the plant is interrupted or modified.  Faults may be further 

delineated according to their size and temporal behaviors such as abrupt, increasing 

(incipient) or intermittent as shown in Figure 1-6.[1-3] 

 
Figure 1-5 Fault classification (adapted from [1]) 

 
 

 
(a) abrupt 

 
(b) incipient 

 
(c) intermittent 

Figure 1-6 Temporal fault classification (adapted from [3]) 
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It is important to distinguish between a fault and a failure.  A fault causes a 

change than can be worked around.  A failure describes the inability of a system or 

component to accomplish its function.  A failure is an irrecoverable event.  Fault-

tolerant control has to prevent the fault from causing failure at the system level.  

This research has narrowed the scope to observing plant behavior that can help 

identify faults.  The focus is on the method to determine the system characteristics, 

primarily the parameters of interest and characteristics of the process and 

measurement noise.  While this effort does stop short of true fault-tolerant control, 

the methodologies are provided for a solid framework to influence design and 

decisions towards fault-tolerant control.  Blanke et al. may be reviewed for further 

reading on the subject of fault-tolerant control. 

An additional term is defined according to Isermann in [2].  A malfunction 

is defined as an intermittent irregularity.[3]  Both failures and malfunctions develop 

from faults as illustrated in Figure 1-7.  In the GRAPE framework, a malfunction’s 

observability will depend on its duration.  If the duration of a malfunction is shorter 

than GRAPE’s ability to respond to the change, then the malfunction may not be 

detectable.   
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Figure 1-7 Progression of unattended fault (adapted from [3]) 

(1 represents a properly operating system) 
 

1.4.2 System Behavior, Parameter Space and Fault Diagnosis 

Blanke et al. [1] describe the system behavior, B,  as the set of all possible 

input/output (I/O) pairs (u,y).  The system behavior can be divided into subsets 

representing a faultless system, B0, and a faulty system, Bfault, and failed system, 

Bfailed, as shown in Figure 1-8.  The union of each (B0  Bfault  Bfailed) does not 

have to encompass the entire set of possible behaviors.  For the purpose of this 

research, the regions are defined uniquely per equations (1-1) and (1-2) to facilitate 

detailed examination.  Analysis becomes more complicated if the intersections of 

each behavior set are non-empty as shown in Figure 1-8.   

 0 fault failedB B B B    (1-1)

  

 0 0; ;fault failed fault failedB B B B B B       (1-2)
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Figure 1-8 Overlapping system behavior regions (adapted from [1]) 

 

Blanke et al. [1] further describe fault diagnosis as a method of determining 

which behavior the I/O pairs belongs.  This definition will be used for the case of 

nonlinear additive faults.  For the remainder of the fault cases, a more appropriate 

description of system behavior is based on the parameter space.  This is illustrated 

for a three-dimensional parameter space in Figure 1-9.  The nominal performance 

region, Bnominal, is the designed operating point and including some acceptable 

tolerance for implementation.  A region of degraded performance is represented by 

the faulty region, Bfaultly.  In this region, either the performance is acceptable, or a 

fault-tolerant controller can recover by adjusting the system plant model to match 

actual parameters.  Failure is the region outside of the faulty region.  Drastic 

measures would be taken, such as a system shutdown, for the failure case.  These 

concepts will be further explored within the problem formulation of Chapter 2.  The 

parameter space is defined in detail in section 2.4.3.1. 
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Figure 1-9 3-D Parameter space with behavior regions 

 
1.4.3 Fault Diagnostic Problem 

The diagnostic problem is to determine the correct fault f case or cases from 

the current subset of input values and associated measurements  , mU Y .  If there 

is no fault, then the fault is f0 which is the faultless case.  The FDD steps are 

summarized in Table 1-3.  The method used for diagnosis follows the consistency-

based diagnosis of Blanke et al. [1]  Consistency-based diagnosis determines if the 

measurement subset  , mU Y , called input/output (I/O) pair is consistent with the 

nominal system behavior, Bnominal.  If the system is not part of the nominal behavior 

B, then a fault fi has likely occurred.  The diagnosis step compares fault candidate, 

fi, to a predefined set of faults.  The final diagnosis may be a single fault or a set of 

faults if the fault behavior definitions are not unique.  There is also the possibility 

that the behavior is outside the defined regions.  In that case, the fault candidate fi 

(3) 

(1) 
(2)

Bfailure 

Bfaulty 

Bnominal 
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is not detectable.  This research modifies the consistency based approach to 

determine system behavior from the current estimated parameter values. 

Table 1-3 Fault detection and diagnosis steps (adapted from [1]) 

1. Fault Detection – determines if a fault has occurred 

2. Fault Isolation – determines the location where the fault occurred  

3. Fault Identification and Estimation – determines identity and 

magnitude of the fault 

 

For the purpose of this research, the behavior is defined by the current 

parameter estimate.  As mentioned in section 1.4.2, the fault regions within the 

parameter space are assumed to be unique for simplicity of analysis.  The faultless 

behavior described by B0 is also unique in its definition.  This assumption is not 

required.  However, it would require additional methods beyond the parameter 

space evaluation to isolate the faults. 

 

Figure 1-10 Parameter space 
 

B0 

Bf2 

Bf1 

Bf5 Bf4 

Bf3 

Bfailure 
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1.5 Fault Tolerant Control 

The concept of fault tolerant control (FTC) is introduced from the point of 

view of Blanke et al. in [1].  This section provides the necessary motivation for the 

research problem statement.  It is desired to find and stop the effects of a fault before 

the fault degrades the system performance or becomes a failure.  The process of 

detecting and stopping the propagation of the effects of a fault is handled by a fault 

tolerant controller.  The fault tolerant controller interacts between a given system 

(plant) and the controller.  The fault tolerant controller performs or controls the 

following tasks listed in Table 1-4.  

Table 1-4 Fault tolerant controller tasks (adapted from [1]) 

 handles the feedback or feedforward control law 
 handles decision-making layer that determines the control 

configuration 
 reacts to the existence of a fault by adjusting the control to handle 

the faulty behavior of the plan 

 
From an outside observer of the overall system, the system is considered 

fault tolerant if the fault is not visible.  This does not mean that the system will not 

give status to what state it is in.  Fault tolerant simply means the system satisfies its 

intended design even in the presence of a fault. 

There are two distinct steps to achieve fault tolerance: fault detection and 

diagnosis, followed by control redesign.  These steps are described in Table 1-5.  

Both steps are performed by a supervision system that oversees the FTC process in 

the fault tolerant controller. 
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Table 1-5 Steps to achieve fault tolerance (adapted from [1]) 

1. Fault Detection and Diagnosis – detect and identify the fault 

2. Control Redesign – adaptation of controller to the appropriate 

algorithm and parameters for the feedback controller 

 

The basic fault tolerant control systems are illustrated in Figure 1-11.  FDD 

is handled by a diagnosis algorithm using a system model with the input and 

measured output.  The algorithm estimates the states and evaluates the residuals.  

The residuals are the errors between the system state estimates and measurements.  

The model includes assumed properties for both the process noise acting on the 

plant and the measurement noise on the output sensor.  Fault tolerance is either 

made by an adaptation/accommodation process in the controller or reconfiguration 

to an alternate control scheme. 

Historically, the simplest method of FTC is limit-checking of system 

parameters.  Other methods of control have limited fault tolerance built-in.  For 

example, both robust and adaptive control are fault tolerant to an extent by design.  

Robust control tolerates change in the plant dynamics and performs according to 

its desired intent.  For robust control, fault tolerance is achieved without changing 

the controller and thus is called passive fault tolerant.  Robust controllers are 

suboptimal and exist only for a restricted set of changes of the plant.  Therefore, 

there is a tradeoff between robustness and performance.  For adaptive control, the 

controller adapts to the plant changes.  This adaptation is a type of active fault 
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tolerance.  Adaptive control has historically been limited to linear models and 

slowly varying parameters.[1]  However, recent research has shown that MMAE 

adaptive methods can be constructed for nonlinear systems [47] and handle abrupt 

changes[48].  The derivation of MMAE provided in section 2.5.1 sets up the 

foundation upon which the nonlinear GRAPE framework is built. 

The focus of this research is limited to the FDD part of FTC.  A hypothetical 

fault tolerant controller can control operation within a nominal range and acceptable 

faulty adaptive range.  This fault tolerant controller could use this information to 

provide a system reconfiguration or shutdown in the failure case.  Designing the 

fault tolerant controller to react and maintain fault tolerance is outside the scope of 

this research. 
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(a) Fault Accommodation

 

 
(b) Control Reconfiguration 

Figure 1-11 Fault tolerant control systems (adapted from [1]) 
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1.6 Overview of State and Parameter Estimation 

1.6.1 State Estimation 

This research addresses the issue of concurrent state and parameter 

estimation.  There are many methods to estimate the states from assumed models 

using the input and measured output.  The most common and useful method for 

linear systems is the Kalman filter (KF).[49]  Sorenson states that “…the Kalman 

filter represents the most widely applied and demonstrably useful result to emerge 

from the state variable approach of modern control theory.”[50]  The Kalman filter 

is capable of producing accurate estimates of the true states of a physical system, 

but it is limited by the system model.[47, 51, 52]  

1.6.2 Parameter Estimation with the Extended Kalman Filter 

When the parameters of the system model are uncertain, alternative 

techniques must be performed.  One such method is to augment the parameters to 

the state model.   There will be one extra state for each parameter of interest.  The 

state space system becomes nonlinear.  Therefore, a nonlinear filter such as the 

Extended Kalman Filter (EKF) is required.  Crassidis and Junkins provides an 

example using the EKF to estimate model parameters in Example 3.6.[53](pgs. 

190-192)  The EKF takes advantage of the characteristic that the error dynamics 

can be accurately represented by first-order Taylor series expansion if the initial 

condition is close. This approximation is updated for each new data point.  The 
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EKF is not precisely optimum; however, it has successfully been applied to a large 

range of nonlinear systems. [53] 

Augmenting parameters to the EFK system model without additional 

measurements creates an observability issue.  In practice, the EKF does well when 

initial conditions are known even when the observability rank is less than the 

number of states.  However, extending the EKF to with more parameters for the 

purpose of FDD produces the possibility that the EKF will no longer converge.  

There are other nonlinear filtering method options such as nonlinear least squares 

and the unscented Kalman filter.[47]  However, the observability issue will still be 

present.  Increasing the number of measurements is one possible method to address 

the observability issue.  However, adding measurements may not be feasible.  

Therefore, an alternate method is desired. 

Alternative methods using system identification techniques can help 

provide an understanding of the system at the designed nominal state.  Ljung 

provides recognized methods in [54].  Electronic and structural systems typically 

are typically designed for specific environmental requirements.[55]  They will 

undergo finite element analysis followed by extensive verification. Vibration 

testing is used to validate or develop a transfer function representation.  Testing 

includes frequency response analysis, modal parameter estimation and mode shape 

estimation and model verification.[56]  The system is typically evaluated near its 

nominal design state.  Changes can happen in real-time or even during repair.  A 
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simple weld repair may change heat treated aluminum and alter its properties.  The 

desire is to understand the system during real-time operation using online methods. 

1.6.3 MMAE for Parameter Estimations 

There are multiple alternative estimation methods from which to choose.  

Probabilistic methods such as the particle filters and bootstrap filters are options, 

but they are complicated to implement.  Multi-hypothesis modeling techniques 

offer the use of simple representative models with methods to determine which 

model or combination of models represent the system.  Two such methods often 

found in literature are the ensemble Kalman Filter (ENKF) and multiple-model 

adaptive estimation (MMAE).  The method chosen for this research is MMAE. 

MMAE creates a system of independent Kalman filters representing 

hypothesis models.  The measurement residuals from the bank of filters are used 

with a hypothesis testing technique to weight the models.  The hypothesis technique 

is typically maximum likelihood estimation; however, it can be other weighted 

hypothesis testing techniques.  The resultant weights determine the most likely 

model or weighted average of “near” models that represents a system.  The 

advantage of the MMAE technique is the models can be Kalman filters of simple 

state models as shown in Figure 1-12.  These models can be extended to other more 

complicated models such as the EKF as the formulation of [53] does not assume 

linear model measurements.  The parameter values are devised from the hypothesis 

testing technique based off a posterior probability distribution function (pdf) built 
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from the covariances of the measurement residuals.  Much analysis is utilized to 

determine the models to use in the system.  They are based on interest in accuracy 

and the regions of the FDD criteria.  For the purpose of this research, the regions 

are defined by the area of interest within the possible parameter space. 
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Figure 1-12 Overview of multiple-model Adaptive Estimation  

(adapted from [53] and [57]) 
 

For this research, MMAE is used to identify the system parameters from 

limited input/output (I/O) data.  MMAE is also used to track the system parameters 

in real-time.  Ultimately, FDD is capable using the parameter tracking of MMAE 

with simple monitoring algorithm defining the behavior according to the current 

parameter estimates.  The MMAE approach has been used to successfully estimate 

both linear (Chapters 2 through 4) and a more general nonlinear approach (Chapters 

5 and 6).   
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1.6.4 Relevant MMAE Literature 

MMAE research has evolved significantly from its introduction in Magill’s 

1965 paper ([51]) when it “was beyond the capability of computer processing 

technology.”[53](pg 249)  MMAE can be easily implemented with a higher number 

of models today than when it was introduced because of increases in computing 

capability.  The parallel nature of MMAE also lends itself to distributed computing 

approaches.  There are several sources of literature where MMAE is applied or 

improved.  One such area of interest is FDD applications.  Table 1-6 provides a 

summary FDD applications of MMAE in literature.  For MMAE research in 

general, there are two groups that stand out.    The main researchers reviewed are 

Crassidis with the generalized multiple-model adaptive estimation (GMMAE) and 

Maybeck with his moving-block MMAE (MBMMAE, acronym adopted from 

[58]).  Each researcher and their collaborators have contributed significantly to the 

state of the art of MMAE methods.  Miller’s dissertation on Modified-MMAE 

(M3AE) is also worth mentioning. 

Crassidis and Junkins present the base MMAE approach used for GRAPE 

in section 4.6.2. of [53].  Their recursive version is based on [59] and [60].  This 

MMAE version uses maximum likelihood estimation to determine the parameter 

and state estimates from the parallel models.  In literature, Crassidis and Cheng 

introduce the generalized multiple-model adaptive estimation (GMMAE) in [61] 

with further research in [62], [63] and [64].  GMMAE’s goal is to improve the 
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likelihood function used to update the weights of MMAE.  GMMAE exploits the 

correlation between measurements by using history of the residuals.  If only one 

correlation step (history) is used, then the GMMAE is equivalent to MMAE.[63]  

Further research is presented in [62], [63] and [64] using GMMAE to estimate noise 

parameters of a tracking system. 

Table 1-6 MMAE applications in FDD 

 general FDD [48, 65] 
 aircraft [16-18, 66] 
 aircraft interference/jamming, GPS/INS [67-69] 
 unmanned aerial vehicle (UAV) [19] 
 suction climbing robot [14, 15] 
 determination of fault type after detection [70] 
 model-matching [71] 
 fault detection for Li-ion battery [72] 
 sensor failures on mobile robot [73] 

 

Maybeck and Hentz introduced moving-bank multiple-model adaptive 

estimation (MBMMAE) to literature in 1985.[57, 74]   MBMMAE “is an attempt 

to reduce the computational loading associated with the implementation of a 

fullscale” MMAE.[57]  MBMMAE provides increased state estimation and control 

performance.  However, the performance increase and computational costs must be 

compared with using a lower granularity fixed bank MMAE. [57]  A good summary 

of MBMMAE considerations is found in [75].  These comments are paraphrased in 

Table 1-7 below.  Maybeck has collaborated with several other authors to apply 
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and improve the MBMMAE to areas of research, many of which are listed in Table 

1-8. 

Table 1-7 Considerations when using Maybeck’s  
moving-bank MMAE (MBMMAE) (adapted from [75]) 

 the true parameter should lie within the filter’s parameter space 
 the level of discretization of the continuous parameter space directly 

impacts the accuracy of the estimate 
 one of the filters should be close to the true parameter 

 

The GRAPE approach used in the research effort has similarities to 

Maybeck’s MBMMAE shown in Figure 1-13.  Both approaches use filter banks 

that move.  However, GRAPE uses Crassidis’s MLE approach to estimate the filter 

parameters rather than MAP to select a discrete filter with the highest probability.  

Furthermore, the GRAPE filter banks are not limited to the discrete predefined 

banks of MBMMAE.  Rather, the GRAPE filter bank is limited to a continuous 

parameter space defined by upper and lower bounds of the region of interest.  

Furthermore, GRAPE employs multiple methods to sample and resample the 

region. 
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Figure 1-13 Moving-bank from predefined models (adapted from [76]) 

 
Table 1-8 Areas of research using Maybeck’s  

moving-bank MMAE (MBMMAE) 

 FDD on aircraft [16-18] 
 FDD on an unmanned aerial vehicle (UAV) [19] 
 FDD using enhanced motion and sizing improvements [48, 65] 
 comparison with single Kalman filter and linear quadratic (LQG) controller  [57] 
 comparison with Standard Kalman Filter Bank (SKFB) and Generalized Likelihood 

Ratio (GLR) [77] 
 evaluation of performance using space structure models [57, 78-81] 
 FDD in aircraft interference/jamming, GPS/INS [67, 68] 
 attenuate vibrations in a simulated large flexible space structure [76, 82-86] 
 moving-bank decisions and parameter discretization [68] 
 robustness evaluation [79, 80] 
 aircraft tracking [58] (comparison with supervised learning of adaptive interacting 

multiple model (SLAIMM)) 
 optimizing design strategy [87] 

 

One other MMAE approach is worth mentioning is Miller’s Modified-

MMAE (M3AE).  Miller introduces M3AE to simultaneous estimate states from a 

single KF designed to accept parameter estimates from MMAE.  His dissertation 

[52] tests the method using second-order mechanical systems with uncertain natural 
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frequency.  M3AE is then applied to a “13-state nonlinear integrated Global 

Positioning System/Inertial Navigation System (GPS/INS) system” where the 

variance of the GPS measurement noise affecting the GPS outputs” is the unknown 

parameter.  Miller provides a design tool for analyzing and predicting M3AE 

performance before simulation. 

1.6.5 Defining MMAE Models Using Latin Hypercube Sampling 

Latin Hypercube Sampling is a popular method to distribute samples over 

the region of interest.  LHS guarantees that a sample is distributed in every stratum 

for each parameter.  It is easy to implement, and the number of required samples 

does not grow in the manner other random sampling techniques does.  So far, it has 

not been found in literature related to sampling MMAE models.  Chapter 3 covers 

LHS and other sampling techniques. 

1.7 Research Objectives and Document Organization 

The primary objectives of this research were: 

1. Develop an FDD framework to accurately estimate system states and 

parameters concurrently based on multiple-model adaptive estimation 

(MMAE) techniques 

a. Framework shall dynamically reallocate the models to improve the 

resultant estimates 

b. Framework should track both constant and time varying 

parameters 

c. Framework should handle both slow and abrupt changes in 

parameters 
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2. Implement both uniformly spaced sampling and sampling using the Latin 

Hypercube Sampling technique 

3. Evaluate the relationship between Latin Hypercube Sampling (LHS) 

sample size (number of required models) and the performance of LHS 

sampling MMAE models 

4. Expand the framework to handle nonlinear parameters 

5. Demonstrate the framework on a nonlinear system 

 

The research has met all objectives with the implementation of the GRAPE 

framework.  The evidence is provided in this document.  The document is organized 

in a systematic manner to present the necessary theoretical background to support 

an understanding of each topic followed by the research contributions and 

simulated results.  Chapter 2 develops the problem formulation and provides the 

specifics of MMAE setting up the necessary theoretical background.  Chapter 3 

covers methods for choosing the hypothesis models.  This research focuses on two 

primary methods, selected grid-based stratification and Latin Hypercube sampling.  

Chapter 4 develops the GRAPE framework from the basic algorithm through the 

sampling techniques and concludes with a linear system implementation.  Chapter 

5 develops a more generalize approach with the nonlinear GRAPE framework.  A 

rigorous definition of the GRAPE framework is presented in respect to the FDD 

problem, each parameter, the methods used to measure parameter estimate 

convergence, and the process to trigger a resample.  Chapter 6 takes a common 

nonlinear system, the Duffing oscillator, and applies nonlinear GRAPE framework 
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for study.  A method for tuning the EKF models is also presented.  Results are 

provided using both persistent sinusoidal input and nonpersistent signals.  This 

document concludes in Chapter 7 by providing a summary of the research 

achievements including the primary contributions.  Finally, an extensive discussion 

of potential future research is provided.  
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CHAPTER 2  

Problem Formulation 

The focus of this chapter is to present the mathematical framework for the 

concepts used for fault diagnosis through adaptive estimation.  The parameters of 

interest are presented in the framework of the common system model.  A brief linear 

system overview is provided.  The parameter estimation techniques using the EKF 

and MMAE are then presented. 

2.1 Common System Model 

A complex system can be represented as a function of the system states (x), 

initial values (x0), system parameters (), input (u), process noise (w) and 

measurement noise (v).  This relationship is generalized in the measurement 

function y  provided as 

  , , , , ,u w v 0y f x x θ (2-1)

  
The system states are defined by the state-space representation of the system 

model.  The state-space representation breaks the nth-order system model into n first 

order differential equations.  Each desired state is represented by its own differential 

equation.  The states and their corresponding initial conditions are as follows 

  1 2 1i n n

T
x x x x x x (2-2)

  

  01 02 0 0 1 00 i n n

T
x x x x x x (2-3)
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The parameter set  contains the parameters necessary to represent the 

system.  Typically, these parameters are the coefficients of the differential 

equations or some relationship to them.  The parameter set could also include the 

noise characteristics if desired. 

2.2 Linear Systems Overview 

The linear system of interest is presented as Equation (2-4) which is an 

idealized version of Craig and Kurdila’s fundamental single degree of freedom 

(SDOF) equation [56](Eqn 2.19, pg 29).  This equation is also called the 

“fundamental equation in structural dynamics and linear vibration theory.”[56]  It 

is the basic equation of linear system analysis for second order differential 

equations.[88]  In its nondescript form, the equation represents many linear systems 

including mechanical, electrical and a variety of others.  This equation is the basis 

for second order linear system analysis of [46, 49, 53, 56, 88-94]. 

  mx cx kx p t     (2-4)

  
For second order mechanical systems, the equation represents the idealized 

spring-mass-damper where m is the mass, c is the viscous damping coefficient, k is 

the spring constant and p(t) (also called u) is the forcing or driving function (also 

called the load).  When the driving function is sinusoidal, the resulting system is 

called a harmonic oscillator.  The spring is typically assumed to be linear by 

limiting its operation to the linear region as shown in Figure 2-1.  There are several 
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mechanical components that are represented with a linear spring or stiffness.  Figure 

2-2 provides a few. 

u1
u2

e = u2 - u1

fS fS

 
 
 
 

(a)  undeformed and 
deformed spring 

 

21 2v ke

 
(b) for-deformation diagram 

 
Force-deformation behavior of an idealized linear spring 

 

2 1x x x   

1x 2x

 
 
 

(c) undeformed and deformed 
linear viscous dashpots 

 

cx

 
 

(d) force versus elongation rate 
 

Idealized viscous dashpot 

Figure 2-1 Idealized linear spring and viscous dashpot (adapted from [89]) 
 

Damping is typically represented by the linear viscous dashpot model.[56]  

  2 1df ce c x x      (2-5)
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The idealized version of damping used in (2-4) assumes that one end is fixed and 

there is only one velocity term. 

Force-deformation behavior of elastic elements 

 
(a) axial-deformation bar 

axial

EA
k

L
  

 

 
(b) torsion rod 

torsional
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L
  
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(c) cantilever beam 
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L
  
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(d) simply supported beam 

simply supported 3

48EI
k

L
 m 

Figure 2-2 Mechanical elements represented by a spring (from [89]) 
 

SDOF systems are used to model a wide variety of systems.  Several 

examples of SDOF systems are provided in Table 2-1.  These systems can easily 

be expanded to the multiple degrees of freedom cases.  For mechanical systems, the 

degree of freedom is defined by the number of mass or inertial elements. 



www.manaraa.com

 

37 
 

This document does not contain technology or Technical Data controlled under either the U.S. International Traffic in 
Arms Regulations or the U.S. Export Administration Regulations. 

Table 2-1 SDOF systems (simplified single mass models)  
(extracted from [89]) 

 Automotive suspension 
 Engine Propeller System 
 Hoisting system 
 Open loop DC Motor speed control 
 Motor speed control with speed feedback 
 Position control system using DC motor 
 Hydro-mechanical position servo system 
 Pneumatic position servo system 
 Electro-hydraulic position servo control 

system 

 

The typical state model for equation (2-4) is 

  1 1

2 2

0 1
0 01 1

1 1

x x
p t wk c

x x m m
m m

                            




 (2-6)

  
were the states x1 and x2 are the position and velocity respectively.  The 

measurement model is 

   1

2

0
1 0

1

x
y v

x

   
    

  
 (2-7)

  
For simplicity, mass is assumed to be one (m = 1).  With this assumption, the second 

order equation becomes  

  x cx kx p t     (2-8)

  
Furthermore, the state-space model becomes 
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1 1

2 2

0 1 0 0

1 1

x x
u w

x xk c

        
                   




 (2-9)

  
with the measurement model 

   1

2

0
1 0

1

x
y v

x

   
    

  
 (2-10)

  
Equations (2-9) and (2-10) are the basis of the linear methods presented in this 

research.  Many variations are possible.  The methods discussed are extendable to 

those variations. 

The SDOF equation (2-4) can be easily extended to the generalized multiple 

degrees of freedom (MDOF) case shown below 

  t  Mx Cx Kx p   (2-11)

  
where M is the mass matrix  nxnM  , C is viscous damping matrix  nxnC , 

K is the stiffness matrix  nxnK , and p is the load vector  1nxp .  A simple 

MDOF system is shown in Figure 2-3. 

 

  
Figure 2-3 Simple MDOF spring-mass-damper system (adapted from [89]) 
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For a simple second-order mechanical system, the parameters are the mass 

(m), damping (c), stiffness (k) and input coefficient (b) as shown in Equation (2-12).  

The multiplier, g, for the process noise is typically not called a system parameter.  

 mx cx kx bu gw     (2-12)
  

The system parameters would be 

 
 1 2 3 4

T   θ
 

or 

 Tm b c kθ
(2-13)

  
Each parameter could be a known real value denoted as (i) or defined over 

a region as 

       1 |i i ii nx i
l u      θ (2-14)

  
or equivalently as 

 
     ,i i i

l u    θ (2-15)

  
in other literature.  (Note:  The notation [ and ] refer to inclusive end points where 

( and ) refer to exclusive end points.  Each may be combined as necessary such as 

a  (b,c] to represent .b < a  c.) 

Understanding that c and k are not truly independent, one could also choose 

the damping ratio () and natural frequency (n) as parameters. Equations (2-16) 

through (2-18) provide a summary of this alternative formulation. 

    22 n nx x x b m u g m w       (2-16)
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 2 nc m  (2-17)

  

 2
nk m  (2-18)

  
where (b/m) is also known as the static gain (GS). 

The general state-space model is provided as 

      t t t w  x A x B u G (2-19)

  
where A is the system matrix, B is the input matrix, and G is the process noise 

matrix.  The process noise w is defined by its type, Gaussian (N), mean, p (typically 

equal to zero) and variance Q.   

  ,pw N Q (2-20)

  
Recall that equation (2-1) represents the general system measurement 

model.  The exact values of the system parameters are not available.  A 

measurement process is performed such as that shown in Figure 2-4 on a system 

such as the one illustrated in Figure 1-1.  The plant model (equation (2-19)) is 

assumed to be of a known form but may have unknown parameters .  The 

measurement model is provided as 

  t v y H x (2-21)

  
The measurement noise w is defined by its type (typically N for normal (Gaussian), 

mean m (typically equal to zero) and variance R.   

  ,mv N R (2-22)
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where y  is the measurement, H is the output matrix, and v is the measurement noise.  

Each is a vector.  Equations (2-19) and (2-21) can be time-variant or time-invariant.  

Simulating the system simply involves using an ordinary differential equation 

(ODE) solver to integrate the set of first order differential equations.  The ODE 

solver is typically accomplished by using a variable step 4th order Runge-Kutta 

method (RK4) such as ode23 or ode45 in MATLAB. 

Through an appropriate transformation using matrix exponentials, the 

system may equivalently be represented in discrete-time equations 

   1 , 0,k k k k k k k k N t   x Φ x Γ u w w Q  (2-23)

  

  1 , 0,k k k k k kN  y H x v v R   (2-24)

  
The discrete-time model is executed by simply looping through the equations.  This 

process executes at a faster rate because it is a simple matrix multiplication rather 

than an ordinary differential equation solver. 

2.3 The Kalman Filter 

The Kalman filter developed in the 1950’s provides the optimal linear filter 

for linear systems with zero-mean, uncorrelated and white Gaussian process and 

parameter noise.[49, 53, 95]  Even if the noise is not Gaussian, the Kalman filter is 

still the optimal linear filter [49](pg 130).  Figure 2-4 provides an overview of the 

typical application of the Kalman filter for measurements. 
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The Kalman filter provides an estimate to the system states by propagating 

the mean and covariance of the state through time [49](pg 123).  The basic 

algorithm to the Kalman filter is presented in Table 2-2. 

 

y
x̂

 
Figure 2-4 Typical Kalman filter application (adapted from [95]) 

 
 

Table 2-2 Kalman filter algorithm 
1. Define the System Model 

2. Initialize the state estimates and covariance. 

3. Propagate the next state (predict) 

4. Calculate the Kalman Gain 

5. Update 

a. Perform the measurement update 

b. Update the error covariance 

6. Repeat 2 through 4 until the measurements are depleted. 
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Many references provide a rigorous derivation of various types of Kalman 

filters that match the particular application.  Some common tables defining the steps 

are extracted from [53] in Table 2-3 through Table 2-5. 

Table 2-3 Continuous-time Kalman filter (adapted from [53]) 

Model 
                  , 0,t t t t t t w t w t N Q t  x A x B u G   

            , 0,t t t v t v t N R t y H x   

Initialize 
 0

ˆ ˆt 0 0x x  

 ˆ ˆ TE0 0 0P x x  

Kalman Gain        1t t t tK P H R  

Update:  

Estimate                   ˆ ˆt t t t u t t t t t     x A x B K y H x   

Covariance 
                 

     

1T T

T

t t t t t t t t t

t t t

  



P A P P A P H R HP

G Q G
 

 

Table 2-4 Continuous-discrete time Kalman filter (adapted from [53]) 
Model                   , 0,t t t t t t w t w t N Q t  x F x B u G 

   , 0,k k k k kx N y H v v R    

Initialize  0 0ˆ ˆt x x   

    0 0 0
TP E t t x x    

Gain 1T T
k k k k k k k

    K P H H P H R  

Update ˆ ˆ ˆk k k k k k
      x x K y H x  

 k k k k
  P I K H P  

Propagation          t t t t t x F x B u  

               T Tt t t t t t t t  P F P P F G Q G   
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Table 2-5 Discrete-time Kalman filter (adapted from [53]) 
Model   1 , 0,k k k k k k k k N t   x Φ x Γ u w w Q   

 1 , 0,k k k k k kN  y H x v v R    

Initialize  0 0ˆ ˆt x x   

    0 0 0
TP E t t x x    

Gain 1T T
k k k k k k k

    K P H H P H R  

Update ˆ ˆ ˆk k k k k k
      x x K y H x  

 k k k k
  P I K H P  

Propagation 
1k k k k k


  x Φ x Γ u  

1
T T

k k k k k k k k
 
   P Φ P Φ x Q  

 

The Kalman filter will be the basis of the filter models for linear systems 

when considering Multiple-Model Adaptive Estimation.  The Kalman filter is 

capable of producing accurate estimates of the true states of a physical system but 

it limited by the system model.[47, 51, 52]   When the parameters of the system 

model are uncertain, alternative techniques must be performed.  One such method 

is to add the parameters to the state model using an Extended Kalman Filter on the 

resultant nonlinear system.  Crassidis and Junkins provide an example using the 

EKF to estimate model parameters in Example 3.6.[53](pgs. 190-192)   

The extended Kalman filter (EKF) linearizes the system about the current 

state.  Jacobians are used to update the measurement matrix, H, and the system 

matrix, F.  (F is a linearized equivalent to A in equation (2-19).)  The EKF version 

used in this research is the continuous-discrete EKF provide in Table 2-6.  The 

continuous-discrete version takes advantage or the simplicity of discrete gain and 
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updates with a continuous model running with an ODE solver.  The algorithm 

follows the basic Kalman filter steps of Table 2-2. 

Table 2-6 Continuous-discrete extended Kalman filter (adapted from [53]) 
Model                , , , 0,t x t u t t t t t N t x f G w w Q    

   , 0,k k k k kx N y h v v R    

Initialize  0 0ˆ ˆt x x   

    0 0 0
TP E t t x x    

Gain       1
ˆ ˆ ˆT T

k k k k k k k k k k


       K P H x H x P H x R  

 
ˆ

ˆ
k

k k


 

 x

h
H x

x
 

Update  ˆ ˆ ˆk k k k k k
      x x K y h x  

 ˆk k k k k
     P I K H x P  

Propagation                , , , 0,t x t u t t t t t N t x f G w w Q   

               T Tt t t t t t t t  P F P P F G Q G   

 
ˆ

ˆ
k

k k


 

 x

h
H x

x
 

 

2.4 Extended Kalman Filter for Parameter Estimation 

As previously mentioned in section 1.6.3, parameter estimation requires 

additional states to be augmented to the system model in equation (2-19).  The  

result is a nonlinear system. 

For example, using the system equation (2-12) with a measurement matrix 

of H = [1 0], the state-space representation is 
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 
  

 




 (2-25)

  
Augmenting the parameters to the state-space representation expands the model to 
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2 1 2 2 1
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       

      
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x










 (2-26)

  
This system requires a nonlinear filter.  The EKF is chosen with F(x) and H(x) for 

the EKF defined as 

 
 

1 2

2 1 2 2 1

3

4

0

0

f x

f z x z x
x

f

f

   
        
   
   

  

F  

   1 0x xH  

(2-27)

  
Ultimately, the EKF can be used in some conditions with well-known initial 

conditions.  F and H must be linearized at each time step.  There is typically a single 

measurement such as the position.  Adding parameters to the EKF increase the 

order of the system without increasing the measurements.  The EKF model becomes 

less and less observable and may not converge. Therefore, an alternate approach is 

desired.  The approach chosen is MMAE. 
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2.5 Multiple-Model Adaptive Estimation Framework 

Multiple-Model Adaptive Estimation, illustrated in Figure 2-5, is a method 

that uses a parallel bank of Kalman filters to generate estimates of state for each 

filter model.  Each filter is composed of a hypothesis model representing a guess of 

the system model within the defined parameter space of possible values for the 

unknown parameters.  The parameters can be coefficients of differential equations 

as well as process or measurement noise covariance values.  The resultant combined 

state and parameter estimate is provided through the weighted sum of the filter bank 

elements.  There are several methods to perform the hypothesis testing.  Magill 

used minimum mean square error approach.[51]  Maybeck used maximum a 

posteriori estimation (MAP) to select the highest probability filter out of his 

moving-bank [74].  For this research, the estimated weight is determined from the 

maximum likelihood estimation (MLE) following Crassidis and Junkins section 

4.6.2. of [53].  This likelihood function provides the hypothesis of correctness for 

each filter.  MMAE is recursive and may be executed in real time.[53](pg 249)  

Furthermore, MMAE itself is ideally suited for distributed computing due to its 

parallel filter banks.[74] 
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Figure 2-5 Multiple-model adaptive estimation (adapted from [53] and [57])  

 

Multiple-Model Adaptive Estimation (MMAE) was introduced by D. T. 

Magill in 1965.  The original paper, [51], describes the method as "an adaptive 

approach to the problem of estimating a sampled, stochastic process described by 

an initially unknown parameter vector."  Magill’s approach was different from prior 

approaches because the resulting system is optimal by minimizing the quadratic 

expectation of the generalized mean-square-error performance criterion.[51]  

Magill’s approach provided a weighting algorithm that was expected to converge 

weighting coefficients to point to the true model out of a bank of estimators.[51]  

Aguiar provides an overview of MMAE circa 2007 in [47].  Aguiar describes 

MMAE as a type of adaptive observer.  An adaptive observer is a process that 

provides real-time state estimate of the plant from partial and possibly noisy 

measurements of the inputs and outputs.[47]  All or part of the initial conditions, 
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parameters of the plant and the noise may not be fully known.[47, 51]   Without 

uncertainty of the plant parameters, the Kalman filter itself is the optimum linear 

filter, and there is no need for an adaptive estimator.[47, 59] 

The motivation for MMAE methods was the desire for accurate stochastic 

state estimation with systems containing significant parameter uncertainty.[47]   In 

other words, simultaneous estimation of both the states and parameters.  MMAE 

has found applications in a variety of fields including the following domains:  

surveillance and fusion algorithms involving multiple sensors and multiple targets, 

adaptive control, fault detection and isolation, biomedical engineering and other 

systems requiring multiple hypothesis testing.[47] 

2.5.1 MMAE Derivation 

The development of the MMAE filter in this document follows Crassidis 

and Junkins section 4.6.2. of [53] which gives credit to  [59] and [60].  The bank of 

M filters depends on the unknown parameters represented by the vector .  The set 

of parameters, ,  can be constant or time varying during the time of adaptation (or 

convergence) of the MMAE.  Elements representing the M filters are defined from 

a known probability density function (pdf) of ,.  These probabilities are 

represented by p() to provide {(i); i = 1, … , M}.  

The ultimate goal of MMAE is to determine the conditional pdf of the ith 

element of p(i) from the measurements.   Recall, to calculate the probability that 

event a occurs given b has already occurred is p(a|b).  Bayes’ rule is derived from 
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the notion that this probability is proportion to p(a  b).  A proportionality constant 

of 1/p(b) is required to ensure the total probabilities of all possible events, which a 

and b are two such events, sum up to 1. Therefore, probability of a given b is 

expressed as 

 
   

 
|

p a b
p a b

p b


  

(2-28)

  
Similarly, the probability of b given a is 

 
   

 
 
 

,
|

p b a p b a
p b a

p a p a


   

(2-29)

  
Combining both equations yields Bayes’ rule 

 
     

 
|

|
p b a p a

p a b
p b

  
(2-30)

  
 

The conditional pdf of the ith element of (i) is derived by Bayes’ rule to 

give a recursive form 

 
  

     
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     
     
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| |
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k
i
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p

p p p


 



Y p p Y p p
p Y

Y Y p p

 


 
 (2-31)

  
where Y is the sequence  0 1, ,..., ky y y   .  The desire is to develop an update law 

that is only dependent on the current measurement ky .   The conditional probability 

of equation (2-29) and Bayes’ rule (equation (2-30)) are used to determine 
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For each p(i), the set of state estimates     ˆ ˆi i

k k
 x p x  is provided from the bank of 

filters.  Then,   1| , i
k kp y Y p  is provided by   ˆ| i

k kp y x  because  ˆ i
k
x is a function 

of p(i) and it uses all of the measurements up through k-1.  Equation (2-35) becomes  
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 (2-36)

  
where the denominator is the normalizing factor to ensure   |i

kp p Y  is a pdf.  

Defining the weights as     |i i
k kw p p Y  means equation (2-35) can be used for 

the weight equation below. 

       1 ˆ|i i i
k k k kw w p 

 y x  (2-37)

  
The weights are normalized, to sum up to 1 by dividing each by the total weight. 
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(2-38)

  

Notice that only the current time measurement ky  is required.   

The pdf   ˆ| i
k kp y x  is computed from the measurement residual   

    i i
k k k
  e y y   (2-39)

  

The covariance of  i
k
e  is  

               i i i T i i i T i
k k k k k k kE H P H R     E e e  (2-40)

  

where  i
kP is the covariance from the ith Kalman filter. 

Notice that there is no assumption that the output is a linear function.  

Therefore, the nonlinear measurement relation 

     ˆ ,i i
k k k y h x  (2-41)

  
is applicable in for residual calculation of equation (2-39), becoming 

     ˆ ,i i
k k k k  e y h x  (2-42)

  
 i
kH can be taken directly from the EKF, becoming 

       ˆi i i
k k kH H  x  (2-43)

  
    ˆi i
k kH x is applicable for the residual covariance of equation (2-40), becoming 

                      ˆ ˆ
T

i i i T i i i i i i
k k k k k k k k kE H P H R       E e e x x  (2-44)
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Equations (2-41) through (2-44) show that the MMAE algorithm can be easily 

extended to use EKF models.  The pdf   ˆ| i
k kp y x  is given by 
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(2-45)

  
 The weighted sum of the parallel filter estimates is provided by the 

conditional mean estimate 

 
   

1

ˆ ˆ
M

i i
k k k

i

w 



x x  (2-46)

  
The covariance of the state estimate is computed using 
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The parameter estimate ˆ
kθ   at time tk is computed using 
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The error covariance is computed using 
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Equation (2-49) can be used to define and evaluate 3 boundaries of the estimate 

ˆ
kθ .  When the number of models M is large and the models cover significant 

regions of the parameter space  using (i), the resultant parameter estimate of 
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equations (2-48) and (2-49) provide a good approximation of the conditional mean 

of . 

With [52], Miller provides a detailed summary of the assumptions behind 

the basic concepts of MMAE from [78, 96, 97].  Table 2-7 below provides those 

assumptions paraphrased with the references from this document. 

Table 2-7 Miller’s summary of MMAE basic assumptions  
(adapted from [52]) 

 Sampled- data system can be represented by linear Kalman filters resulting 
in Gaussian probability density functions [78, 96] 

 The extended Kalman filters are typically used for nonlinear systems and 
the probability density functions are approximated as Gaussian 

 The values to be estimated can be the uncertain parameters and the 
statistical properties of the noise 

 Parameter estimates vary over a continuous range of the parameter space.  
The range must be stratified in some manner.  The choice of discrete values 
affect the resulting MMAE filters and resulting estimate.  Reference [87] 
provides a method for choosing the discrete values. 

 

2.5.2 Summary of the MMAE Algorithm 

The basic MMAE algorithm as presented by Crassidis and Junkins in 

section 4.6.2. of [53] is provided in Figure 2-5.  The steps are detailed in order in 

Table 2-8.  Steps 1 and 2 are only performed during initialization.  Steps 3 through 

9 are performed for each data point available.  
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Table 2-8 Summary of detailed steps of discrete-time MMAE of [53] 
1. Generate models   iΦ  to represent parameter sets of interest   i θ θ    
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2. Initialize, initial values for: 

a. MMAE state estimate  ˆ0x   

b. MMAE parameter estimates  ˆ
0θ  

c. Parameter estimate covariances   ˆ ˆ TE0 0 0P x x  

d. KF model state estimates   0ˆ ix  

e. KF model covariances
       0 0 0ˆ ˆi i i TEP x x  

f. Initialize filter weights ( )
0 1iw M  

3. For each model: 
a. Propagate the next state (predict)  
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b. Calculate the Kalman Gain  
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c. Update 
i. Perform the measurement update  
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ii. Update the error covariance  
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e. Calculate the posterior pdf (likelihood) 
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where 
 i

ke is the measurement residual and measurement covariance is 
              i i i T i i i T i
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Table 2-8 Summary of detailed steps of discrete-time MMAE 

(continued) 
 

4. Update the weights 
       1 |
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5. Normalize the weights 
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6. Calculate MMAE State Estimate 
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M

i i
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
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7. Calculate the MMAE State Error Covariances 
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8. Repeat 3 through 9 until the measurements are depleted 
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Figure 2-6 Flow of MMAE steps in [53] 
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CHAPTER 3 Choosing the Hypothesis Models 

The focus of this chapter is to cover the methods used to choose the 

hypothesis models of GRAPE.  Two methods to define the hypothesis models are 

present.  The first is the selected grid-based stratification (SGBS) and the second is 

Latin Hypercube Sampling (LHS) used.  The GRAPE framework is formalized 

using each of these methods later in Chapter 4.  This chapter covers a more rigorous 

definition of the parameter space in respect to MMAE and FDD.  The topics of 

model location and sample size are also discussed.  SGBS is then defined as a 

method to stratify the sample space.  The chapter then covers statistical sampling 

techniques used to minimize the model count.  LHS, a widely used sampling 

technique, is presented as the method to appropriately space the model samples 

while also minimizing the model count. 

3.1 FDD Parameter Space 

There are three main concerns when choosing the hypothesis models in the 

FDD framework.  The first concern is defining the parameter space from the 

application of interest.  For the idealized equation (2-8), the parameter space is the 

upper and lower bounds of the coefficients c and k. The parameter space can be 

further evaluated to include possible the noise properties of Q and R.  The topic of 

parameter space was introduced in section 1.4.2 and is formally defined in section 

3.2.  The second concern is the location of models (parameters sets) within the 

parameter space.  The models can be spread evenly over the bounds of the particular 
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parameter, or they could be selected according to a probability distribution.  The 

final concern is the sample size.  The number of filter models affects the accuracy 

of both the parameter and state estimates.[65](pg 770)  The concepts of model 

location and sample size are discussed in section 3.3. 

In the original approach, Magil constructs an optimal estimator by assuming 

the “parameter vector is unknown but is selected from a finite set of known 

vectors.”[51](pg. 435,439)  When the true model is part of the hypothesis model 

set, the weight for the true model can be expected to converge to one with all the 

remaining zero.[51](pg. 435,437)  For the approach of this research, the true model 

is known and used to generate synthetic measurements.  However, the true model 

is not necessarily a specific value within the discretized parameter space.  

Therefore, the model that generates the highest normalized weight is considered 

closest to the true model.  Typically, one model will generate the highest 

normalized weight with the vast majority of normalized weights near zero.  Grid-

based sampling technique may produce several models that are close to the true 

model.  In this case, there is one model with normalized weight near one and the 

other close models with much smaller normalized weights followed by models with 

effective weights near zero. 

3.2 Parameter Space for MMAE 

This section builds on the concepts of parameter space introduced in section 

1.4.2 to fully define the parameter space of the system of interest.  The parameter 
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space is defined as the set of possible values for each parameter.  Each parameter 

defines another dimension, d, in the space.  Therefore, each parameter is selected 

from a parameter space defined below. 

 

     1  where 

for 1, ,

i i id
bounds l u

i d

      


θ θ


 (3-1)

  
The parameter set, or sample set, defines the current set of parameters that 

define equation.  This is defined below.   

 
       

1 2

for 1, ,

i i ii
ni

i d

     


θ 


 (3-2)

  
 

 
Figure 3-1 2-dimensional parameter space behavior definition example 

 
 



www.manaraa.com

 

61 
 

This document does not contain technology or Technical Data controlled under either the U.S. International Traffic in 
Arms Regulations or the U.S. Export Administration Regulations. 

From equation (2-14) the each parameter dimension is represented by the 

parameter, i, a lower bound il , and an upper bound iu.  When an expected value 

of the parameter is known, that parameter dimension may also be defined by the 

mean and variance. 

   1 2| ,nx
i i i i iN   θ θ θ  (3-3)

  
For purposes of analysis, the MMAE method allows the mean and variance 

characteristics of the process noise (p,Q) and variance noise (m,R)  also to be 

included in the parameter space.  Using these noise characteristics can add up to 

four parameters (p,Q,m,R).  Typically, the mean is assumed to be zero.   

 
3.3 Model Location and Sample Size 

There are a variety of techniques to define the Kalman filter models used in 

MMAE.  These models are hereby referred to as model samples, or simply samples.  

They are chosen from the parameter space.  The sample, (i), is the parameter set of 

interest.  It will include the values of all parameters of interest, (i) = [(i)
1, (i)

2, …, 

(i)
n-1…, (i)

n], where n is the number of parameters, i is the current sample and l is 

the current parameter.   

For this research effort, the grid-based method using equally spaced 

parameter values to span each respective parameter dimension is called selected 

grid-based stratification (SGBS).  Selected in the name SGBS indicates that it is 

not a random value.  Selected means the model is generated a at grid depending on 
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the number of models selected and the current range of the parameter space.  This 

method is similar to the original MMAE of Magil [51], Crassidis and associated 

researchers Alsuwaidan, Cheng, García and Martí ([61-63]), along with Maybeck’s 

moving-bank MMAE (MBMMAE) in [78].  Vasquez has modified the moving-

bank approach to generate samples models using the chi-squared distribution.[48, 

65]  However, there is one key difference.  The models are not predefined.  An 

initial set is predefined on the original parameter ranges and the number of model 

divisions per parameter.  Each subsequent resample reinitializes based off of the 

number of model divisions per parameter, the latest parameter estimate and the 

updated parameter ranges.  The parameter ranges follow a process to either contract 

to a parameter estimate or expand to track parameter estimates on the periphery or 

outside the current bounds.  (Specifics on the final resampling behavior and 

framework can be found in section 5.2.) 

An alternate sampling approach introduced by this research is to sample the 

parameter space using Latin Hypercube Sampling (LHS) techniques.  LHS is a 

variance reduction technique used to minimize the number of models (samples) for 

Monte Carlo applications.  The following two sections present SGBS and LHS 

techniques in detail.   

3.4 Selected Grid-Based Stratification (SGBS) 

The preliminary focus of this research is SGBS.  This approach gives 

accurate values with the cost of computing a higher number of filters.  SGBS simply 
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divides each parameter  into equally spaced strata based on the accuracy and 

computational complexity criteria.  The start and end points of each parameter 

dimension are defined by the region of interest following equation (3-1). 

For this research, the primary region of interest is the parameter space of 

acceptable faulty operation, see Figure 3-1.  The system is assumed to be designed 

with fault tolerance within this region.  The faultless operation is a subset of the 

faulty operation parameter space.  Outside of the faulty operation region is 

considered a system failure. 

Parameter divisions or strata are determined by the desired precision.  The 

number of models, m, affects the accuracy of the MMAE estimation. [48](pg 770)  

MMAE weights will converge primarily to the model with the minimum residual 

error.  Therefore, the closer the models are spaced, the closer the converged MMAE 

model will be to the true system parameter. [52, 53]  Figure 3-2 illustrates a grid-

based stratification effort generating 100 models. 
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(2) 

 
(1) 

 
10x10 = 100 models, 1 at each intersection 

 
Figure 3-2 2-Dimensional parameter space example 

 

Expanding the notion to a three-dimensional grid is illustrated in Figure 3-3.  

Here, the process noise has added another parameter to the parameter space. 

(2) 

 
             (1) 

 
5x5x5 = 125 models, 
1 at each intersection 

Figure 3-3 3-dimensional parameter space example 
 

(3) 
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The number of samples, or filter models, is determined by the product of 

the number of parameter divisions or strata.  In general, the number of samples, Sn 

is 

     1 2n dS strata strata strata    (3-4)

  
where n is the number of parameters and i is the individual parameter of interest.  

If the number of strata per parameter are equal, then equation (3-4) becomes a 

power relationship shown below. 

  d

nS strata (3-5)

  
Equations (3-4) and (3-5), show that adding another parameter multiplies the 

number of models by the new strata of that parameter.  This adversely affects the 

computational complexity by requiring more resources to implement additional 

models.  Unless the strata and number of parameters are relatively small, an 

alternate sampling technique is desired. 

The sample size of SGBS is chosen from two competing criteria, 

computational complexity and desired accuracy of the results.  A Higher number 

of models requires more computational effort to perform each update and 

propagation of the Kalman filter.  In addition, they also require more memory to 

store the data.  Therefore, the desire is to have the least number of models as 

possible.  However, minimizing the number of models affects the accuracy of the 

MMAE estimation. [48](pg 770)  MMAE weights will converge primarily to the 
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model with the minimum residual error.  Therefore, the closer spaced the models 

are, the closer the converged MMAE model converge to the true system model.  In 

practice, the starting number of models per parameter is ten.  The simulation is 

executed.  Then a decision to increase or decrease the number of models is made 

based on both the time to execute the GRAPE framework and the final desired 

accuracy of the resultant estimates.  Since the system is a simulation, the true values 

are known and available for comparison.  For implementation on hardware, a more 

detailed evaluation of the cost of computational complexity and real-time execution 

capabilities must be compared with the desired accuracy. 

3.5 Sampling Techniques 

Random sampling techniques are presented in this section.  The sampling 

method is compared with the Monte Carlo method.  The independent and 

independently distributed (IID) sampling technique is then presented to be 

compared with the chosen Latin Hypercube Sampling method.  The number of 

samples is addressed by evaluating the confidence of LHS based off IID which 

typically bounds LHS.  Finally, the reasons for choosing LHS as a sampling method 

are summarized. 

3.5.1 Evaluating MMAE as a type of Monte Carlo Method 

The variance reduction technique known as Latin Hypercube Sampling is 

used to minimize the number of models (samples) for MMAE.  This section 

presents the models (samples) analogous to random samples for the Monte Carlo 
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method.  A brief history of the Monte Carlo method is presented followed by 

comparing the set of MMAE models, when the MMAE weighting method has 

converged, to a Monte Carlo simulation. 

Monte Carlo (MC) methods are a broadly defined set of computational 

algorithms that repeatedly sample parameters to obtain some numerical result.  

They are used to evaluate physical or mathematical problems that are deterministic 

in principle but difficult to determine by other approaches.  Nick Metropolis termed 

the name Monte Carlo method while working with Edward Teller, John von 

Neumann, Stanislaw Ulam, and Robert Richtmyer as they developed techniques for 

using the new computers in the late 1940s and early 1950’s at Los Alamos National 

Laboratories.[98](pg 96), [99]  Prior to the formal coining of the name, Enrico 

Fermi used the method in hand calculations.  His use can be traced back as early as 

1934 while working on neutron diffusion. [98](pg 98), [99](pg 128).  Statistical 

sampling had been developed for quite some time.  However, without computers, 

the process was very laborious.   Early MC was performed on mechanical 

calculators and then mechanical punch card computers.[98] [99]  In [100], Ulam, 

Richtmyer, and von Neumann discussed the statistical approach for solving neutron 

diffusion using Monte Carlo techniques.[99]  The first computerized Monte Carlo 

calculations were conducted on the recently improved ENIAC in 1948.[98](pg 

100).   In 1949, Metropolis and Ulam presented “The Monte Carlo Method” [101]   

as “the motivation and a general description of a method dealing with a class of 
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problems in mathematical physics.  The method is, essentially, a statistical 

approach to the study of differential equations, or more generally, of integro-

differential equations that occur in various branches of the natural sciences.” 

Modern computing capabilities have rapidly expanded the use of the Monte 

Carlo method and many related techniques.  It is used for simulations in a wide 

variety of fields.  Engineering, finance, health care, manufacturing, military, 

political science and weather are just a few. 

The Monte Carlo (MC) methods or techniques related to this proposal are 

used to evaluate the integral of complex random variable functions.  The 

relationship is expressed below. 

  y f θ  (3-6)

  
where  is a random variable or set of random variables.  Equation (3-6) is the same 

form as the measurement equation (2-1). 

A MC method will evaluate equation (3-6) at pseudo-random values of  to 

generate a simulation.  These pseudo-random values will be generated according to 

the desired distribution to represent the system of interest.  Multiple simulations, or 

runs, are evaluated with enough samples to ensure accurate results.  In the end, 

these simulations are evaluated to estimate the integral of equation (3-6) in the 

region of interest. 
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MMAE methods are similar to Monte Carlo techniques.  Kalman filters are 

executed, and their resulting estimates are weighted with a multiple hypothesis 

testing method.  For this research, the focus of the MMAE is using maximum 

likelihood to evaluate the weights and ultimate sum the weight multiplied times the 

individual filter parameter.  These individual evaluations are summed for the 

overall estimate.  In effect, each Kalman filter of the MMAE is an evaluation of 

equation (3-6).  This is a simple way to stratify the parameters  into grid based 

strata.  Evaluating this grid stratification approach would be closer to a rectangular 

rule integration rather than a pseudo-randomly distributed evaluation for 

integration using the MC method.  For pseudo-random distribution of , each 

parameter is an independent and independently distributed (IID) random variable.  

(IID simply means that each random variable has the same probability distribution 

as the other random variables and the random variables are mutually 

independent.[102])  IID can be a uniform distribution over the entire region of 

interest or a normal distribution focused on the known or initial guess or one of a 

multitude of techniques to fit the desired need of the problem of interest. 

3.5.2 IID Sampling 

The focus of this research is two stratification methods, selected grid-based 

sampling (SGBS) and Latin Hypercube sampling.  The independent and 
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independently distributed (IID) approach is briefly covered to provide a comparison 

bound with LHS. 

IID describes data where the samples are independent and independently 

distributed, hence the name.  IID means that for a given set of data , each set, (i) 

of samples is taken from a “fixed (“stationary”) probabilistic model.”[102]  

Independence is described by equation (3-7) below for two events A and B.[103](pg 

65).  For the parameter sample section case, given one sample selection for a 

parameter, it does not affect the probability sample selection for another dimension 

of the parameter space. 

         |  or |P B A P B P A B P A  (3-7)

  
The concept of independence can be expanded by the product rule to show that the 

probability of both sample selection A and sample selection B occurring is simply 

the product of their independent probability of the events occurring.  This is 

reflected for two sample events A and B below. 

       P B A P A P B  (3-8)

  
The above concepts described for the two event case can simply be expanded to 

cover the number of samples, n, to collect an entire sample set per equation (3-2). 

The two most common probability distributions are the uniform and 

Gaussian (normal) probability distributions.  For the purpose of sampling, the 

uniform distribution would be used to populate the samples with equal probability 
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between the upper and lower bounds of each parameter.  The samples are typically 

implemented with a pseudo-random number generator that generates values 

between 0 and 1.  The samples are adjusted by scaling to the appropriate range and 

shifted to start at the lower bound.  Figure 3-4 illustrates the uniform distribution.  

Figure 3-5 shows simple uniformly distributed samples taken (a) in two dimensions 

and (b) in three dimensions.  Figure 3-6 shows samples with a Gaussian (normal) 

distribution for both (a) two dimensions and (b) three dimensions.  This method is 

similar to the uniform distribution with the exception that the goal is to center the 

distribution on a mean value, , and scale the normalized Gaussian distribution 

(standard normal distribution) by multiplying by the appropriate standard deviation, 

.  For the normal distribution, care must be taken to limit the low probability.  

Typically, this is handled by truncating the sampled generated outside the 

acceptable range of the parameter.  There are a number of methods to handle this 

truncation.  The easiest is to set the value to the mean to avoid flattening the 

probability distribution.  Other methods are available that implement the truncation 

to more precisely represent the original normal distribution.  Botev provides one 

method called “minmax tilting” in [104].  Chopin discusses specialized algorithms 

guaranteed to generate a random variable from the desired distribution concerning 

parameters and truncated intervals in [105]. 
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Figure 3-4 Uniform distribution, U(a,b) 
 

p = rand(250,2); 
plot(p(:,1),p(:,2),'.'); 
scale/shift: c = (b-a)*p + a 

(a) 

 
b=rand(250,3); 
scatter3(b(:,1),b(:,2),b(:,3),'.'); 

 
(b) 

Figure 3-5 Uniform IID samples, U(0,1) 
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a=randn(2000,3); 
plot(a(:,1),a(:,2),'.'); 
scale/shift: c = sigma*p + mean 

(a) 

 
a=rand(250,3); 
scatter3(a(:,1),a(:,2),a(:,3),'.'); 

(b) 
Figure 3-6 Gaussian IID samples, N(0,1) 

 

 
 

(must set a limit (say ) to handle low probability tails when sampling) 
 

Figure 3-7 Gaussian distribution, N(,2) (adapted from [106]) 
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3.5.3 Latin Hypercube Sampling 

Monte Carlo integration has a typical averaged squared error on the order 

of  2
O n

 .  The denominator is the variance 2 and n is the number of simulations.  

To lower the error, the number of simulations, n, is usually increased resulting in 

an error reduction proportional to 1 n .  Alternatively, a new MC formulation is 

introduced that produces the same answer for the problem.  This new formulation 

reduces the variance 2 rather than increasing n.  These techniques are called 

variance reduction techniques. [107](chapter 8, pg 3) 

Many variance reduction techniques are available, such as antithetic 

sampling, stratification, common random numbers, conditioning and control 

variates, and importance sampling of [107](chapter 8) along with advanced 

methods described in [107](chapter 10) such as grid-based stratification, 

stratification and antithetics, Latin hypercube sampling, orthogonal array sampling, 

adaptive importance sampling, nonparametric AIS, generalized antithetic sampling, 

control varies with antithetics and stratification, bridge, umbrella and path sampling 

techniques.  The goal is to reduce computational complexity and provide ease of 

implementation.  The focus of this research has narrowed to LHS due to these goals 

together with the amount recent research in LHS. 

For the purpose of this research, all parameters of interest are considered 

equally important.  We have seen that grid based stratification multiplies the 
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number of required samples or filters per parameter to generate ever increasing 

models.  Looking at this from another view, assume we have the computational 

capacity to compute 100 filters, n.  It is desired to divide n into equal strata numbers 

for each parameter d.  For d >1, the grid-based method can only generate n1/d strata 

per component.  This is far less than the number of available samples.  For example, 

if n is 100 and d is 3, the number of available strata is less than 5 for each.  For the 

sake of accuracy, using 4 division per parameter is not acceptable.  [107](chapter 

10, pg 8)  Computational capacity prevents more samples.  Therefore, we visit the 

variance reduction technique of Latin Hypercube Sampling (LHS) to improve the 

result. 

Latin Hypercube Sampling is a variance reduction technique that was 

discovered by different researchers for different applications. Reference [107] 

provides a good summary of the origin of LHS which was introduced to literature 

in 1979 by McKay et al. in [108].  The term Latin Hypercube is an extension of 

Latin squares used in experimental design.[107]  Literature often refers to LHS as 

placing a point in the unit cube and uses the terminology [0,1)d where d is the 

dimension equal to the number of parameters.[107]  The 1979 McKay et. al paper, 

[108], introduced LHS a way to explore computer experiments.  LHS provides a 

way to explore the input space of a function while automatically stratifying the 

important variables without the user having to know the details of the variables. 

[107]  Reference [108] proved the variance of the estimated mean of the LHS was 
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less than or equal to the variance of the estimated mean of IID when the function 

sampled is monotone in each of its d input variables.[107] 

In general, the parameter space is stratified in LHS by generating n equal 

strata for each parameter.  This is illustrated in Figure 3-8 where the number of 

parameters d is 2 and the LHS sample size of 10 points.   

 

 
10 points of LHS sample in [0,1]2 

 
Figure 3-8 2-d LHS example 

 

An alternate view is shown in Figure 3-9.  Here the dimension d is 3 

representing the number of parameters and sample size n remains 10.  Increasing 

the number of parameters does not automatically increase the sample size. 
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10 points of LHS sample in [0,1]3 

 

Figure 3-9 3-d LHS example 
 

The parameter space can be described as a unit cube as dimension d of the 

number of parameters as [0,1)d.  The LHS process generates samples of each 

dimension between 0 and 1.  Each dimension is then scaled to the actual parameter 

range of interest in a scaling and shifting technique similar to the IID uniform 

transformation techniques mentioned in 3.5.2.) 

Owen provides a concise summary of the alternative implementations of 

uniform LHS in [107].  The first and most common method is described by the 

following equation 

 
 1

,1 ,1j ij
ij

i U
X i n j d

n

  
      (3-9)

  

where j is a uniform permutation of {0, …, n-1} and ijU  is uniform random 

variable, ~ [0,1)ijU U .  The number of samples is n, and the number of permutations 
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is d.  The d permutations and nd random variables are mutually independent.  With 

n samples, nd strata of volume 1/n each are balanced. [107] The LHS estimate of 

the mean  
[ 0 ,1)d

f x    is  

  
1

1
ˆ

n

LHS i
i

f X
n




   (3-10)

  
with Xi generated by (3-9).  For uniform LHS, the average squared error is on the 

order of  2O n .[107]  The comparative MC averaged squared error is on order 

of  2O n .[107] 

Analysis of variance (ANOVA) techniques [109] can be used to study the 

variance.  For complex models, the variance 2 is not typically known but can be 

estimated from samples.  

  
2

2

1

1
ˆ

1

n

i n
i

s Y
n




 
   (3-11)

  

  
2

2

1

1
ˆ ˆ

n

i n
i

Y
n

 


   (3-12)

  
The most common method used is (3-11) because it is unbiased.[107]  The expected 

value is 

  2 2E s   for 2n   (3-13)
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With the variance estimate s2, the error is on the order of s n  .  The 

estimated variance has an expectation, or mean, of .  Applying CLT, ˆn   has 

approximately a normal distribution with a mean of zero and variance 2 n .[107] 

Reducing the variance 2 reduces the error, hence the name variance 

reduction.  “LHS can be much more accurate than plain Monte Carlo.” 

[107](Chapter 10, pg 10)  Much better results can be achieved for small d and well-

behaved f().[109]  If f() is additive, meaning it can be represented by a set of 

functions where each dependent fewer number of parameters, then the average error 

is small because of a smaller variance.  “Asymptotically, the variance is less than 

that obtained using simple random sampling, with the degree of variance reduction 

depending on the degree of additivity in the function being integrated.”[110]  The 

improvement seen by LHS is maximized when all the additive functions are 

dependent only on one variable.[109] The stratification technique with uniform 

LHS will cover all the regions of every parameter no matter how the individual sets 

are paired.  This can be seen in Figure 3-8.  There are 25 samples spanning each 

parameter strata.  Increasing the parameter space dimension will still leave 25 

samples in each stratum of each parameter as illustrated in Figure 3-9 where the 

dimension is increased by one parameter. 
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An alternate implementation of LHS is a centered version, also called 

latticed LHS, where the value is not randomly distributed within each stratum but 

centered.  The following equation describes the centered version 

 
 1 1 2

,1 ,1j
ij

i
X i n j d

n

  
      (3-14)

  
Here, the uniform portion, Uij, is replaced by the term 1/2.  The centered version 

was actually discovered much earlier that LHS.  In 1954, the latticed method was 

used in literature by Patterson in [111] in relation to agriculture experiments.  This 

version has a small bias on the order of  21O n .[107] 

All variants thus far are based on uniform distribution of independent 

parameters over the unit cube.  Another alternative implementation of LHS is to 

evenly partition the cumulative distribution function (CDF) as illustrated in Figure 

3-10.  When implementing using the normal distribution, this approach focuses 

more samples near the mean value . 

This method is used by Stein in [110] to produce LHS samples when the 

components of the input variables are statistically dependent.  Stein’s algorithm 

produces a sample vector that has the approximate joint distribution when large 

numbers of samples are taken.  An implementation of this approach is provided in 

MATLAB using the lhsnorm function.  The method can be used to stratify the 

normal CDF about the mean of parameters using a covariance matrix.  An 

independent normal CDF implementation is implemented using a diagonal 
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covariance matrix.  As in the uniform LHS method, a centering method is available 

to set the sample at the center of each stratum rather than randomly distributed 

through each. 

 

 
10 samples in 10 evenly partitioned strata 

(blue points are randomly distributed in stratum, 
green points are centered in each stratum)

Figure 3-10 1-d LHS based on CDF 
 

3.5.4 Evaluating Confidence 

There is much research to validate MC methods including its many 

varieties.  References [110, 112-123] provide a several approaches for 

understanding uncertainty and sensitivity.  LHS is typically bounded by MC 

methods; therefore, standard MC confidence interval analysis are used with 

assumptions about the MMAE system of interest.  This analysis provides 

conservative guidance on selecting the sample size.  A guaranteed confidence 

S
tr
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interval for MC is provided by in [124].  This method, like all the others, relies on 

sample runs to better understand the system.  The guaranteed confidence interval 

has a large computational cost by a factor ranging from 2 to 100 over methods base 

off of the CLT with known standard deviation .[124](pg 126) 

A simple example comparing LHS with IID techniques is shown in Figure 

3-11.  Here uniform LHS samples were generated following the MATLAB 

lhsdesign function.  Their mean value was compared with the mean value of 

normally distributed random numbers from the MATLAB rand function.  The 

figure shows that LHS samples produce a mean value closer to 0.5 for a smaller 

number of samples.  As the sample size increases, the difference diminishes.  The 

main takeaway from this example is that estimating the required number of samples 

for a Monte Carlo analysis with IID samples will typically bound the error of LHS 

methods.  As previously stated, LHS will typically outperform standard IID 

analysis. 
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(a) 1 < n   100,000 
(samples sizes 10,000 and larger produce 

similar results for both rand and lhsdesign) 
 

 
(b) 0 < n   1000 (zoomed in view of figure (a)) 
(lhsdesign consistently produces a mean near 0.5 
throughout the samples size range starting at 1) 

Figure 3-11 Univariate LHS and IID mean vs. sample size 
 

n = 1,000 
see figure (b) below for 

1 < n   1,000 
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When knowledge about the variance 2 is available, one method to 

determine a starting point for sample size estimate follows confidence interval 

analysis using Chebychev’s inequality. [107](section 2.9)   

Following, Owen’s analysis from [107](section 2.9):  The variance is 

assumed or known to be bounded by 2
0  , then the variance of the expected value 

of the mean is 2
0 n .  From Chebychev’s inequality,  

  0 2

1
ˆp k n

k
     (3-15)

  
A conservative 99% confidence interval for  is found by using  

 010
ˆ

n

  (3-16)

  

When the variance is less than or equal to the assumed variance, i.e., 2 2
0  , 

equation (3-16) has at least 99% probability of containing the mean .  This defines 

a confidence interval width of 010 n .  Therefore, a 99% confidence interval of 

a given width  will define a single dimension sample size as follows. 

 
2
0

2

400
Chebychevn




 (3-17)

  
Owen states this is more conservative and the interval only needs to multiply 

0 n  by 2.58 rather than 10.  Therefore, an adjusted sample size is adjusted by a 

factor of  2
2.58 10 1 15  as follows. 
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2
0

2

26.67
adjustedn




 (3-18)

  
Owen provides an alternate sample size formulation based off of 

Hoeffding’s inequality.  Corollary 2.1 on pg 36 of Chapter 2 in [107] handles the 

case of common bounds on the random variables. 

Let Y1, …., Yn be independent random variables with mean  such 

that a  Yi  b for finite a and b.  Let  
1

ˆ 1
n

ii
n Y


   and  0,1 

, then for >0 

  ˆ 2p       (3-19)

  
when  

    2
2 log 2

Hoeffding

b a
n





 (3-20)

  
The sample size nHoeffding provides the sample size for the interval ˆ 2   to have 

a guaranteed confidence of 100(1-)%.  One difficulty of applying this formulation 

is that the independent random variables span the same bounds a through b. 

This research has derived a slightly different formulation based off of 

Chebychev’s inequality.  To evaluate confidence and uncertainty in MMAE, start 

with the assumption that each set of MMAE filters is a run of a Monte Carlo 

experiment for each available data point (measurement).  Furthermore, assume the 

MMAE model has executed to the point where the weights have converged for each 
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model.   With this assumptions, the m filters of MMAE is equivalent to n 

experiments of MC.  Each filter is defined by equations (2-37) and (2-38).  They 

are represented in further detail as the estimate using the index of the particular 

filter re-writing equation (2-1)  below with the added term of the weight, wt. 

  ( ) ( ) ( ) ( ) ( ) ( ) ( )ˆ ˆ , , , , , ,i i i i i i if u w v wt 0y x x θ (3-21)

  

Index i represents the ith filter model, state estimate x̂, initial conditions 0x

, parameters , process noise w and measurement noise v and MMAE weight wt for 

each data point available.  The input term is consistent across all models.  With this 

understanding, the total MC equivalent evaluation for the current data point is as 

follows. 
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ˆ ˆ ˆ ˆ ˆ... ...
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total
i

i m m

y y

y y y y y







     


(3-22)

  
The individual estimates of equation (4.1) can be considered the instance of the 

random variable ŷ .  The case where the distribution of the model is random for 

each parameter  is called an independent and independently distributed (IID) 

random sequence.  Therefore, each model estimate ŷ  has the same probability 

distribution.  Furthermore, each estimate has the same mean, , and variance, 2, 

as expressed below. 
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   
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 

(3-23)

  
The MMAE performs the random measurement m times for each data point.  The 

empirical average is 

 
(1) ( )ˆ ˆmEmperical y y

Average m

 



(3-24)

  
The Law of Large Numbers states for large m, the average is very close to the 

expected value  with high probability.  Theorem 4 of [125](pg 6) is stated for 

reference. 

Theorem 4. Let X1, …, X IID random variables with E[Xi] =  and 

var(Xi) for all i.  Then  
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nX X
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 


   
   

 


(3-25)

  
where the right hand side goes to 0 as n  . 

Applying Theorem 4 of [125] to the MMAE evaluation of a single data point 

with the assumption of converged weights, the evaluation of probability can be 

expressed as 

 
(1) ( ) 2

2

ˆ ˆmy y
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m m

 

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 


(3-26)
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Assuming the variance is bounded by the measurement noise, v~N(0,R), equation 

(3-26) can be transformed into a conservative probability relationship. 

 
(1) ( )

2

ˆ ˆmy y R
P

m m
 


  

   
 


(3-27)

  
The actual interest is the region within  .  Therefore, the probability is (1 – P) of 
(3-27). 
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(3-28)

  
 

In summary, the confidence interval can be generated from equation (3-28) 

   value is in interval ,
100

P x x
     

(3-29)

   
Therefore, in the context of the Law of Large Numbers (LLN), the 

relationship between variance 2, number of samples m, precision error  and 

confidence percent  is 

 
2

2
1

100m

 


  (3-30)

  
Solving for m provides 
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Adjusting for multiple parameters assuming that the samples are 

independent, the individual Pi probabilities of each parameter 

 

(1) ( )2 2 2

2 2 2

1
100

n n

m m m

  
  



     
     

     

 


(3-32)

  
Therefore,  
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(3-33)

  
3.6 Summary 

Both SGBS and LHS are valuable tools for choosing the hypothesis models 

in the FDD framework.  SGBS provides a method for stratification that can be 

applied to the initial sample parameter set and future resample sets.  The accuracy 

of the MMAE process can fit the desired goal by selecting the right number of 

models to span each parameter space.  By the nature of SGBS’s design, it requires 

more models costing more time to perform computations.  The number of models 

grows according to a product rule with each new dimension added to the parameter 

space.  Therefore, an alternate approach is desired to keep the number of models in 

a range that is computable with the resources available.   

Statistical sampling techniques were explored, and LHS was selected.  LHS 

was chosen as the primary sampling technique for this research effort for four main 

reasons.  First, the effect of increasing the number of parameters does not 
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automatically increase required number of samples by a power rule as SGBS does 

in equation (3-5).  The total number of samples can be kept the same or increased 

depending on the desired accuracy of the results.  Even if the number of samples 

are increased, LHS does not have to grow by the power rule and the stratification 

approach is maintained.  Second, LHS is widely used in MC type research with 

positive results. It is a proven tool and is part of standard analysis software for over 

a decade.  Third, LHS is very simple to implement.  Additionally, there are methods 

to cover both uniform and normal distributions.  Each method may also select the 

option of centering the sample.  The algorithms exist in many software tools such 

as MATLAB.  Finally, LHS provides adequate results.  LHS will populate the 

models more sparsely; therefore, the accuracy of the MMAE process will be 

affected.  Additionally, LHS is a statistical sampling technique.  The results will 

will be different each time even if the same number of samples is chosen. 
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CHAPTER 4  

GRid Adaptive Parameter Estimation (GRAPE) 

The proposed approach is called the grid adaptive parameter estimation 

(GRAPE).  This method is a modification to the MMAE applied to FDD following 

a consistency-based fault detection and diagnosis for linear systems.  This chapter 

presents the detailed modifications to the standard MMAE algorithm.  A summary 

of applied approach to FDD is then presented.  A simple linear model of a 

hydroelectric actuator is used to illustrate the algorithm.  The simulation results are 

discussed in the context of the algorithm components.  The chapter concludes with 

a summary of future work to be performed on the linear version of GRAPE. 

4.1 GRAPE Algorithm 

Modifications were made to the base MMAE approach to track the system 

parameters.  The same weights used for the state estimates x̂  are used for the 

parameter estimates θ̂ as illustrated by Figure 4-1 Linear GRAPE high-level 

summary.  Additional modifications were made to perform online dynamic 

resampling of the parameters from the parameter space.  This modification is 

illustrated in Figure 4-3.  The details of dynamic sampling including resampling 

are covered in section 4.1.2.  For the purpose of determining convergence of the 

MMAE system, an additional step was added after step 9 to test the convergence of 

the MMAE estimates.  If the convergence criteria is met, a series of additional steps 

are taken.  First, the parameters are resampled from adjusted bounds.  Second, the 
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models are regenerated for each parameter set.  Third, a reinitialization process is 

executed.  This reinitialization is different from the original initialization as it sets 

the center of each dimensional range to last MMAE parameter estimate for that 

range. 
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Figure 4-1 Linear GRAPE high-level summary 
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Figure 4-3 GRAPE MMAE high-level summary 

(highlighted sections indicate deviation from base MMAE) 
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Table 4-1 GRAPE algorithm detailed steps 
0. Parameter Space Stratification According to Selected Method 

a. SGBS – selected grid-based stratification 
b. LHS 

i. randomly distributed within uniform strata 
ii. centered within uniform strata 

iii. randomly distributed within normal (Gaussian) strata 
iv. centered within normal (Gaussian) strata 

1. Generate models   iΦ  to represent parameter sets of interest   i θ θ    
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2. Initialize, initial values for: 

a. MMAE state estimate  ˆ0x   

b. MMAE parameter estimates  ˆ
0θ  

c. Parameter estimate covariances   ˆ ˆ TE0 0 0P x x  

d. KF model state estimates   0ˆ ix  

e. KF model covariances
       0 0 0ˆ ˆi i i TEP x x  

f. Initialize filter weights ( )
0 1iw M  

3. For each model: 
a. Propagate the next state (predict)  
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b. Calculate the Kalman Gain  
      1i i iT T
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c. Update 
i. Perform the measurement update  
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Table 4-1 GRAPE algorithm detailed steps 
(continued) 

d. Calculate the posterior pdf (likelihood) 
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where 
 i

ke is the measurement residual and measurement covariance is 
              i i i T i i i T i

k k k k k k kE H P H R     E e e  

4. Update the weights 
       1 |

i
i i i

k k k kw w p 
 y x  

5. Normalize the weights 

 
 

 

1

i
i k

k M
i

k
i

w
w

w





 

6. Calculate MMAE State Estimate 
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7. Calculate the MMAE State Error Covariances 
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9. Calculate the Parameter Estimate Error Covariance,  
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10. Check the Convergence Criteria 
 

11. Repeat 3 through 10 until the measurements are depleted 
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4.1.1 Requirements and Assumptions 

Linear GRAPE requires an assumed model in discrete-time form with a 

fully defined parameter space according to equations (3-1) and (3-2).  The method 

of sampling and resampling must be selected along with predefined convergence 

criteria.   

GRAPE follows the same assumptions listed in Table 2-7.  The GRAPE 

algorithm approach assumes that the actual parameter is within the outer limits of 

each parameter boundary definition.  The method will start with a coarser sampling 

of a larger window and refine the window size to a smaller window as illustrated in 

Figure 4-4.  

(1)
l

(1)
u

(2)
l

(2)
u

(1st )x̂

(2 )ˆ ndx

(3 )ˆ rdx

 
Figure 4-4 Dynamic resizing 

 
4.1.2 Dynamic Sampling 

This section covers the details of each stratification or sampling technique.  

Additionally, the convergence criteria along with resampling steps are covered.  
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Selected grid-based stratification (SGBS) is the baseline method that provides 

accurate results when enough models are chosen to accurately stratify the parameter 

space.  The model count is typically higher for SGBS.  The execution is 

proportionally slower than the LHS with the lower model count of the sampled 

model space.  The user must choose between a high accuracy computationally 

complex SGBS and the lower accuracy less computationally complex LHS method. 

4.1.2.1 Selected Grid-Based Stratification 

SGBS simply divides each parameter space (i) into the defined number of 

strata ni for that parameter to define the parameter values 

       

1 2

i i ii
ni     θ  .  The parameters may be divided into an equal number 

of strata where all ni become n; however, that setting ni = n is not a requirement.  

Figure 4-5 provides an example of the first dimension divided into 11 strata and the 

second dimension is divided into 6 strata.  Kalman filters are created at the 

intersection of each parameter value.  This particular SGBS will require 66 (11x6 

according to equation (3-4)) Kalman filters to implement. 
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Figure 4-5 Selected grid-based stratification example 

 

SGBS is similar to Maybeck’s moving-bank with several differences.  First, 

SGBS approaches the “bank” differently.    The moving-bank method has a set of 

predefined Kalman filter models that are turned on or off for the estimate where 

SGBS defines the Kalman filter models online dynamically from the bounds of the 

individual parameters.  Furthermore, the current set of SGBS KF models is 

completely redefined from adjusted parameter bounds. 

4.1.2.2 Latin Hypercube Sampling 

Latin Hypercube Sampling is an alternative to SGBS using the sampling 

technique originally used for Monte Carlo type methods.   See 3.5.3 for full details 

of Latin Hypercube Sampling.  LHS is implemented according to the four 

definitions listed below:  
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1. randomly distributed within uniform strata (according to equation (3-9)) 

2. centered within uniform strata (according to equation (3-14)) 

3. randomly distributed within normal (Gaussian) strata (see Figure 3-10) 

4. centered within normal (Gaussian) strata (see Figure 3-10) 

Approaches 3 and 4 require a mean  and variance 2 of a parameter value rather 

than upper and lower bounds.  The implementation of options 1 and 2 use the 

MATLAB lhsdesign function and the implementation of options 3 and 4 use the 

MATLAB lhsnorm function.  Each function generates sample values between zero 

and one.  These samples are scaled to match the implementation and shifted to the 

appropriate values.  The sample size for LHS can be determined initially from 

equation (3-33).  However, experimental results have shown that equation (3-33) is 

too conservative.  In practice, LHS sample sizes one third of the value of SGBS 

sample sizes have worked well. 

4.1.2.3 Convergence Criteria 

For both SGBS and LHS, the initial approach for determining convergence 

of the MMAE estimate was to compare the mean squared error (MSE) of the weight 

changes between time steps to a threshold value.  The weights are determined from 

the posterior pdf (equation (2-45)) which is calculated from the measurement 

residual (equation (2-39)) and covariance of the residual (equation (2-40)) for each 

Kalman filter model.  Therefore, the approach is tied to the measurement residuals 

and their covariances.  This method proved to work well as will be shown later in 

the example.  (The topic of convergence was revisited for the nonlinear framework.  
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A more robust test for convergence was added to the more general nonlinear 

framework for GRAPE.  This convergence method is discussed in section 5.3.  The 

same approach is also applicable to the linear framework.) 

4.1.2.4 Resampling 

Currently, resampling is triggered by a positive flag generated from the 

MSE convergence criterial.  The original windows are larger covering the entire 

parameter space as illustrated in Figure 4-4.  The window resizes to a selectable 

percentage of the previous window size.  Twenty percent of the previous window 

size worked well in practice.  (Again, a more robust test for convergence was added 

to the more general nonlinear framework for GRAPE.  This method and resample 

rules are discussed in section 5.3.  These methods are also applicable to the linear 

framework.) 

 
4.2 Application to Fault Detection and Diagnosis 

GRAPE naturally lends itself for use in FDD.  Assuming that both the 

nominal and faulty regions have been previously defined in Table 4-2, fault 

detection is a simple lookup comparison of the parameter estimate from the defined 

parameter based behaviors. Fault identification and isolation is a similar task.  The 

fault can only be identified down to the fault behaviors where the parameters are 

part of the fault definition.  If the fault definitions are not unique, then there will be 

more than one fault candidate.  
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Table 4-2 Fault behavior definitions required for FDD 
For fault detection: 

 Defined parameter space behavior boundary limits (upper and lower) for 
each parameter for the following defined cases 

o Nominal operation behavior: 
n o m in a lB  

o Faulty operation behavior: faultyB  

o Safe operation is assumed to be: safe operation nominal faultyB B B    

 Assume failure when system is outside of the Bsafe operation space 

For fault diagnosis (isolation): 

 Full parameter space behavior definitions for all faults individually fiB  

 Faults may overlap; however, unique identification may not be possible if 
they do 

 

4.3 Application for System Identification 

GRAPE can be used for system general system identification when there is 

no knowledge of the parameters values but a basic dynamic understanding of the 

system is known.  The bounds must initially cover all possible values of the system.  

If the initial run does not converge, then the range may be extended further.  The 

more generalize nonlinear GRAPE has this capability to move the window towards 

nominal values outside of the current window.  This feature can also be 

implemented in the linear GRAPE framework. 
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4.4 Linear GRAPE Framework Results 

A simplified hydroelectric servo model is used to demonstrate the principles 

introduced and to study the GRAPE method.   The model and multiport block 

diagram are illustrated in Figure 4-6.  The basic assumption include: 

 amplifier is not power limited (exceeds required needs of valve operation) 
 hydraulic pressure is sufficient for valve operation 

The defining differential equation is derived from the free body diagram of 

the mass the servo is designed to move.  The resultant equation is  

      2
p a p a L cmx b RA x k AG G h x AG G Cu F f          (4-1)

  
The details of each variable are provide below in  

 
 

Table 4-3.  Equation (4-1) was derived from the system relationship of the 

component model in Figure 4-7, and the free body diagram and the equation 

development in Figure 4-8.  It can be clearly seen that the system is of the form of 

equation (2-4) with the addition of a load force FL and coulomb friction.  For the 

purposes of simplicity, these two terms are assumed to equal zero.  Furthermore, 

all variables are assumed to be a value that results in the ideal form of equations 

(2-8) through (2-10).  The input is assumed to be sinusoidal.  Therefore, the final 

model of the system is the harmonic oscillator of equation (4-2). 

 sin( )x cx kx t     (4-2)
  

Furthermore, the state-space model becomes 
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1 1

2 2

0 1 0 0

1 1

x x
u w

x xk c

        
                   




 (4-3)

  
with the measurement model 

   1

2

0
1 0

1

x
y v

x

   
    

  
 (4-4)

  
 
 
 

Table 4-3 Variable descriptions for hydroelectric servo 
Variable Description 

A piston area 
B damping coefficient 
Cs input sensor gain 
Ga amplifier gain 
Gp piston valve gain 
h feedback sensor gain 
K spring coefficient 

(stiffness of connection) 
R piston valve impedance 

(fC) coulomb friction 
FL load force 
m mass 
u input 
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(a) hydroelectric servo component model 
 

 

(b) multiport block diagram 
Figure 4-6 Hydroelectric servo model 

 
 

 
uV Cu  

(a) input sensor 

 

 
fV hx  

(b) input sensor 

 v a u fV G V V   

(c) amplifier and summing junction 
Q Ax   

(d) actuator and load 

 
p vP G V RQ    

(e) valve 
Figure 4-7 Component models 
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(a) mass free body diagram 
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(b) equation (4-1) development 
Figure 4-8 Model development 

 

A fictitious design goal is a system with behavior identified in Table 4-4.   

Table 4-4 Behavior identification of electrohydraulic servo 
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Figure 4-9 Behavior regions 

 
Synthetic data was generated from the model of (4-2) for 100 seconds using 

the following true values k = 2.5 with each  0.2 0.7 1.0 1.3c  .  The intent 

was to explore the system throughout the underdamped (c < 1), critically damped(c 

= 1) and overdamped (c > 1) regions.  This synthetic data is presented in Figure 

4-10. 
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Figure 4-10 Synthetic data 

 
  

4.4.1 Selected Grid-Based Stratification Results 

SGBS was executed with 10 strata per parameter dimension for a total of 

100 models.  Figure 4-11 through Figure 4-14 represent the respective runs for 

k=2.5 and  0.2 0.7 1.0 1.3c  .  SGBS performed well for this stratification.  

The red X marks the points in a simulation where the window was resampled at 

20% of its previous size.  There are clearly some unnecessary cases of model 

resampling.  The additional convergence criteria to prevent unnecessary resampling 

will be further explored. 
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Figure 4-11 SGBS parameter estimates for c=0.20, k=2.5, 100 models 

 

 
Figure 4-12 SGBS parameter estimates for c=0.70, k=2.5, 100 models 
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Figure 4-13 SGBS parameter estimates for c=1.00, k=2.5, 100 models 

 

 
Figure 4-14 SGBS parameter estimates for c=1.30, k=2.5, 100 models 
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4.4.2 EKF Parameter Estimation using Augmented Parameter Models 

For comparison with the SGBS results, a continuous-discrete EKF filter was 

implemented to estimate the same system by augmenting the states to the system 

model.  While both methods track the parameter well, comparing Figure 4-11 

through Figure 4-14 with Figure 4-15 through Figure 4-18 shows that SGBS 

provides a much smoother result.  In some cases, the EKF converges to the region 

of the actual parameter quicker, but has much more noise present in the 

measurements for the same process and measurement noise characteristics of the 

filter. 

 
Figure 4-15 EKF parameter estimates for c=0.20, k=2.5 
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Figure 4-16 EKF parameter estimates for c=0.70, k=2.5 

 

 
Figure 4-17 EKF parameter estimates c=1.00, k=2.5 

 



www.manaraa.com

 

112 
 

This document does not contain technology or Technical Data controlled under either the U.S. International Traffic in 
Arms Regulations or the U.S. Export Administration Regulations. 

 
Figure 4-18 EKF parameter estimates c=1.30, k=2.5 

 

4.4.3 Latin Hypercube Sampling Results 

The first LHS option (randomly distributed within uniform strata (according 

to equation (3-9)) was studied in a Monte Carlo fashion.  The LHS sample sizes of 

[20 40 50 60 70 80] were explored with 10 runs each to perform a total of 240 runs.  

The data was gathered in a MATLAB “.mat” file for further study.  The goal of this 

study is to estimate the mean and variance of the results.  Therefore, resampling 

was turned off. (A single red X marks the first sample point.)  Two results from this 

group of simulations are provided.  The first LHS sample run with 20 LHS samples 

models is shown in Figure 4-19 and Figure 4-20.   The second LHS sample run with 

50 LHS sample models is illustrated in Figure 4-21 and Figure 4-22.  (LHS with 

resampling is studied in the nonlinear GRAPE framework in Chapters 5 and 6.) 
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Figure 4-19 LHS state estimate results for c=1.30, k=2.5, 20 models 

 

 
Figure 4-20 LHS parameter estimate results for c=1.30, k=2.5, 20 models 
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Figure 4-21 LHS state estimate results for c=1.30, k=2.5, 50 models 

 

 
Figure 4-22 LHS parameter estimate results for c=1.30, k=2.5, 50 models 
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4.4.4 Discussion of Results 

The algorithms for both the SGBS and LHS stratification methods have 

been implemented.  Both run well with easily selectable options.  Comparing SGBS 

with the EKF implementation shows that the SGBS method converges to a result 

and maintains a smooth estimate.  Much more noise is present in the EKF estimate 

of the parameter.  There is the possibility of further tuning the EKF to smooth out 

the parameter estimate, but this has not been explored at the time of this document 

generation.  LHS shows promise from initial sample runs.  These initial runs were 

limited to a Monte Carlo simulation to collect results for evaluating trends in the 

final estimate.  Unfortunately, the samples were not extensive enough to evaluate 

the mean and variance trends verse the sample size. 
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CHAPTER 5  

Generalized Framework for Nonlinear GRAPE using the Extended Kalman Filter 

This chapter covers the extension of GRAPE to a wider range of systems 

using the continuous-discrete extended Kalman filter (EKF) rather than the Kalman 

filter.  First, the EKF GRAPE algorithm is presented.  The FDD approach is then 

modified for more distinct rules defining each dimensional range for both the SGBS 

and LHS methods.  These procedures enable GRAPE to either narrow its focus on 

converged values within a sample range or expand the range in the appropriate 

direction to track parameters outside of the current sample range bounds.  Each 

criterion defines the specific behavior when the MMAE model converges and a 

resample is considered.   New convergence criteria and resampling approaches are 

presented based on the derivatives of the state estimates.  Convergence is 

determined from a measure of the parameter derivatives using a moving average 

window.  All rules for initial sampling, resampling behavior and convergence 

criteria are tunable to match the desired behavior goal.  Chapter 6 presents the EKF 

GRAPE algorithm implementation in the context of the Duffing oscillator. 

5.1 EKF GRAPE 

The EKF allows the exploration of more general nonlinear systems of 

equations (5-1) through (5-3). 

                        , , , , 0,i i it t t u t t t t t N t x f x θ G w w Q 
 (5-1)
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      1
i i

k t k  x x  (5-2)

  

      , 0,i i
k k k k kN y h x v v R   (5-3)

  
(The integration of equation (5-1) determines the value at the next time step, k+1, 

for equation (5-2).)  Extending MMAE using EKF models has been shown 

previously in literature by both Crassidis and Junkins’ text [53] and Aguiar’s review 

of “sum of Gaussians” filters in [47].  Aguiar provides a summary of several 

potential approaches beyond just the EKF approach to overcome the limitation of 

linear MMAE models.  Those include “sum of Gaussians” filters using banks of 

extended Kalman filters, and other related Bayesian-based algorithms such as 

multiple-hypothesis tracking, bootstrap filters, unscented Kalman filters, particle 

filters. [47]  

This research follows a straightforward extension of GRAPE for nonlinear 

models.  The approach follows the same methodology presented in 2.5.  The 

Kalman filter Models either the discrete-time Kalman filters of Table 2-5 or 

continuous-discrete EKFs of Table 2-6. 

Equations (2-41) through (2-44) show that the EKF models can be used 

directly for calculating the posterior pdf in equation (2-45).  Therefore, equation 

(2-45) simply replaces step 3.d of Table 4-1.  The state estimates are used directly 

from the individual EKFs. 
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Figure 5-2 and Table 5-1 illustrate a more generalized approach of EKF 

GRAPE (as opposed to the linear implementations of Figure 4-3 and Table 4-1).  

The modification of the algorithm is illustrated in the “init. 1” and “3.1 Propagate” 

steps.  The “init. 1” step replaces the linear discrete-time models with a generalized 

nonlinear set of models.  These models can represent the linear systems; however, 

the implementation uses a variable step 4th order Runge-Kutta (RK4) differential 

equation solver approach rather than just looping through the models using matrix 

multiplication.  Therefore, there is a significant cost in computational complexity 

that can be avoided with linear systems by using discrete-time linear models. 
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Figure 5-1 Nonlinear GRAPE high-level summary 
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Figure 5-2 GRAPE EKF MMAE high-level summary 
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Table 5-1 GRAPE EKF algorithm detailed steps 
0. Parameter Space Stratification According to Selected Method 

a. SGBS 
b. LHS 

i. randomly distributed within uniform strata 
ii. centered within uniform strata 

iii. randomly distributed within normal (Gaussian) strata 
iv. centered within normal (Gaussian) strata 

1. Generate models   iΦ  to represent parameter sets of interest   i θ θ    

     
                   

     

1  from 

, , , 0,

, 0,

i i
k

i i

i i
k k k k k

t k

t x t u t t t t t N t

N

  

 

 

x x

x f G w w Q

y h x v v R

 

 

  

 
2. Initialize, initial values for: 

a. MMAE state estimate  ˆ0x   

b. MMAE parameter estimates  ˆ
0θ  

c. Parameter estimate covariances   ˆ ˆ TE0 0 0P x x  

d. KF model state estimates   0ˆ ix  

e. KF model covariances
       0 0 0ˆ ˆi i i TEP x x  

f. Initialize filter weights ( )
0 1iw M  

3. For each model: 
a. Calculate the Kalman Gain  

      1i i iT T
k k k k k k k

    K P H Η P H R  

b. Update 
i. Perform the measurement update  

         ˆi i i i i
k k k k k k
       x x K y H x  

ii. Update the error covariance  
     i i i

k k k k
    P I K H P  
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Table 5-1 GRAPE EKF algorithm detailed steps (continued) 
c. Propagate the next state (predict)  

                   
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d. Calculate the posterior pdf (likelihood) 
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where 
 i

ke is the measurement residual and measurement covariance is 
              i i i T i i i T i
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4. Update the weights 
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5. Normalize the weights 

 
 

 

1

i
i k

k M
i

k
i

w
w

w





 

6. Calculate MMAE State Estimate 
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i i
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7. Calculate the MMAE State Error Covariances 
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Table 5-1 GRAPE EKF algorithm detailed steps (continued) 
8. Calculate the Parameter Estimate 

   

1

ˆ ˆ
M

i i
k k

i

w


θ θ  

9. Calculate the Parameter Estimate Error Covariance,  

       
1

ˆ ˆ ˆ ˆ
M T

i i i
k k k k

i

w


  θP θ θ θ θ  

10. Check the Convergence Criteria 
 

11. Repeat 3 through 10 until the measurements are depleted 
 

5.2 FDD Approach for EKF GRAPE 

For the EKF GRAPE approach for FDD, each dimension is handled 

separately in a common parameter range method.  Range values are initialized prior 

to executing the algorithm.  The parameter range options are provided in Table 5-2.  

These settings provide both the initial values and the range settings. Resampling 

behavior depends on the location of the current estimate along with the parameter 

range settings.  Figure 5-3 provides an example of a assumed parameter range with 

its initial range estimate and range settings.  The current estimate marks the GRAPE 

estimate for the parameter. 

The parameter range covers the valid parameter values.  The current 

estimate range reflects the boundary of the sample region covered by the GRAPE 

models.  The current estimate range is a subset of the parameter range.  The current 

estimate range can be as large as the entire parameter range or as small as the 

minimum width.  Resampling is triggered with a resample flag.  The current 



www.manaraa.com

 

123 
 

This document does not contain technology or Technical Data controlled under either the U.S. International Traffic in 
Arms Regulations or the U.S. Export Administration Regulations. 

estimate range will change according to the location of the current estimate and the 

predefined options that set the minimum width on both ends of the parameter range 

along with the minimum and maximum edge values within the current estimate 

range.  A parameter space is represented by a group of parameter ranges 

representing each unknown parameter.  Figure 5-4 illustrates a three-dimensional 

parameter space for the parameters (1), (2) and (3).  Each parameter characteristic 

is independently defined. 

 

Range Interval Description 
[a,k] parameters space limits 
[a,b] minimum width at the lower limit 

[a,c] and [i,k] boundary width 
[b,j] region of normal operation 
[d,h] current estimate range 
[d,e] lower edge range 
[e,g] center range 
[g,h] upper edge range 
[j,k] minimum width at the upper limit 

 
Figure 5-3 GRAPE parameter range regions 
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Figure 5-4 GRAPE range regions for 3-dimensional parameter space 
 

 
Figure 5-5 GRAPE range regions for 3-dimensional parameter space 
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5.2.1 Resample Behavior within Center Range 

In general, convergence within the center range will reduce the current 

range estimate by multiplying its width by the “resample.reduce” multiplier.  This 

is illustrated in Figure 5-6.a.  The resampled estimate range has reduced and is 

centered on the current estimate.  This reduction reflects normal narrowing of the 

tracking window.  When a resample is initiated near a limit, the width may be 

reduced by the proximity to closest limit.  Figure 5-7.a illustrates a width reduction 

near the lower limit of the parameter range.  The resample of Figure 5-7.a would 

normally expand the window size because the current estimate is below the 

minimum edge value.  However, it is near the lower limit so both a center range 

and edge range resample will behave the same here. 

Figure 5-6.b illustrates an expanding range resample.  The current estimate 

is below the minimum edge; therefore, the range is expanded by the 

resample.enlarge multiplier.  Again, the expansion will be adjusted when the 

estimate is near the parameter limits. 
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Table 5-2 GRAPE range parameter options 

Parameter Description 
Point/Interval 
on Figure 5-3 

sample_type ‘SGBS’ or ‘LHS’ N/A 

uniform_samples number of SGBS samples (defined for 
each dimension) 

N/A 

limit.lower lower limit boundary of parameter range a 
limit.upper upper limit boundary of parameter range k 

limit.smallest_percent smallest width as percent of overall 
parameter range 

[a,b] and [j,k] 

range.min 

initial value set, resample values are 
calculated as  
(range.mid-range.width/2); may 
be adjusted when near lower limit 

d 

range.max 

initial value set, resample values are 
calculated as  
(range.mid+range.width/2) may 
be adjusted when near upper limit 

h 

range.start_time time when current (re)sample began N/A 
range.sample_index count of (re)samples N/A 

resample.reduce multiplier for resampling within center 
range (normally between .2 and .8) 

N/A 

resample.edge 

percent of window width minimum and 
maximum border where next parameter 
resample width is enlarged rather than 
reduced 

determines e 
and g 

resample.enlarge multiplier for resampling within lower 
and upper edge ranges 

N/A 
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Table 5-3 GRAPE range parameter calculated values 

Calculated Parameter Description 
Point/Interval 
on Figure 5-3 

num_models 
total number of samples (LHS_num or 
product of each dimensional 
uniform_samples for SGBS) 

N/A 

limit.width limit.upper  - limit.lower [d,h] 

limit.smallest_width 
limit.width * 
limit.smallest_percent [a,b] and [j,k] 

range.start_time recorded time when current (re)sample 
began 

N/A 

range.sample_index index counter of resamples (initialized to 1 
on the first sample) 

N/A 

range.width 

initially calculated as  
range.max + range.min;  
resample increases or decreases base on the 
location of the current sample  

[d,h] 

range.mid 

initially calculated as  
(range.max + range.min)/2;  
starts as current parameter estimate at 
resample; 
may be adjusted based on location within 
parameter range when near lower and upper 
limits

f 

range.min_edge 
range.min + 
resample.edge*range.width e 

range.max_edge 
range.max -
resample.edge*range.width g 

 
5.2.2 Resample Behavior near Parameter Limits 

As mentioned in 5.2.1, the resampling behavior is modified when the 

current estimate is near the range limits.  In cases where the current estimate is 

within a region approaching the boundary limit, the distance from the boundary 

limit defines the new current estimate range width.  This is illustrated in Figure 

5-7.a.  The estimate range width is now a maximum of twice the distance to the 

lower limit.  For this case, the current estimate remains the center of the new current 

estimate range.  When the current estimate is within the minimum estimate width 
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of a range limit, the resampled current estimate width is set to twice the minimum 

width value.  This was an implementation choice to minimize the chance of getting 

trapped near a limit.  Near the limit, the range width cannot get smaller.  

Additionally, the center is always at the minimum width from the edge, because the 

center of the range width near the limit cannot move any closer to the limit.  

However, the center can move away, and the range width can grow as it does. 

 
a. reduction resample

 
b. expansion resample 

(similar behavior when current estimate is within the upper edge range) 
Figure 5-6 Resampling in region of normal operation 
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a. resample near limit 

(distance to limit () defines the new estimate range (2)) 

 
b. resample within minimum width of limit 

(new estimate range set to 2 times minimum width) 
Figure 5-7 Lower boundary region resample (upper is mirrored) 
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5.3 Updated Convergence Determination Approach 

Previously in the linear approach, convergence was measured from a mean 

square error of the MMAE weights.  Essentially, when the weights converged, then 

the system was considered converged.  There was difficulty in finding an 

appropriate value to set as a threshold.  The EKF GRAPE method updated the 

convergence criteria to track the derivative of the parameter estimates.  (This update 

may also be applied to the linear GRAPE approach.) 

5.3.1 Simple Moving Average of Parameter Estimate Derivative 

Each parameter estimate is tracked.  The backward difference method using 

prior two parameter estimates, equation (5-4), is used to estimate the derivatives.  

  
     

1 2
ˆ ˆ ˆ3 4ˆ

2

i i i
i k k k

k t

     


   (5-4)

  
 
(This approach is derived from combining the Taylor series expansion evaluated at 

the prior time step k-1 and the one before that at k-2 and solving for the first 

derivative ignoring terms higher than the second order derivative.  It is equivalent 

to the backward finite-divided-difference formula in Figure 23-2 of  [126].) 

The derivative measurements can be dominated by noise.  Figure 5-8 

illustrates how the noisy data is converted into a threshold flag.  Figure 5-8(b) 

shows the threshold flags being consistently set when using the noisy derivative 

data of Figure 5-8(a).  Therefore, the measurements are smoothed using a simple 
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moving average (SMA) window.  The SMA approach is shown in equation (5-5).  

Figure 5-8(c) illustrates the SMA window using 10 previous samples. 

 
(a) derivative values and SMA(10) 

 
(b) derivative within limit (.015)

 
(c) Resample Flag (15 Consecutive Derivative Flags) 

Figure 5-8 Noisy derivative to resample flag 
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  ˆ ,i

k kSMA n (5-6)

  
5.3.2 Criteria for Convergence 

Table 5-4 provides the convergence criteria options along with a summary 

the stored and calculated values.  The SMA derivative flag is set when a specified 

number of prior SMA derivative values are less than a threshold value.  Figure 5-9 

illustrates the case for where the derivatives of three parameters are tracked.  Their 

flag values are individually set based on the convergence criteria.  The resample 

flag is set to one to trigger a resample when the convergence rule is met.  In this 

case, the convergence rule is represents when any individual SMA derivative has 

converged. 

 
Table 5-4 GRAPE convergence options and calculated values 

Options 
Parameter Description 

SMA_num number of past samples used for Simple Moving Average 
(SMA) calculation 

SMA_flag_limit number of past SMA values  derv_limit required for a 
true flag (1) 

derv_limit limit on the derivative (slope) of the parameter estimate 

derv_limit_redux 
multiplier for decreasing derv_limit each time a new 
sample is taken (set to 1 for no reduction); used to make it 
more difficult to resample each time a new sample is taken 

delay_resample delay resample a minimum of this value in hundredths of a 
second (set to zero for no delay) 

resample_rule 

currently there are 3 resample rules: 
1 = SMA_derv_flag set for at least one dimension  
2 = SMA_derv_flag set for at least two dimensions 
3 = SMA_derv_flag set for at least three dimensions 

forced_resample 
forces resample at fixed time interval in hundredths of a 
second (set to a large value for no effect); used for 
debugging purposes only 
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Table 5-4 GRAPE convergence options and calculated values (continued) 
Calculated Values

Parameter Description 
derv derivative calculated from equation (5-4) 

SMA_derv simple moving average derivative value calculated from 
equation (5-5) for each parameter dimension 

SMA_derv_within_limit set to 1 if SMA_derv  derv_limit, otherwise 0; 
stored for each parameter dimension 

SMA_derv_flag true if SMA_flag_limit is met on the current dimension, 
stored for each parameter dimension 

resample_flag true if passes resample_rule 

 
 

 
 

Figure 5-9 Example using resample rule 1 
 
5.3.3 Resample Rules 

Individual parameter estimate convergence criteria are combined to trigger 

a resample based on the resample rule selected.  A delay modifier is added to set a 
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minimum resampling interval.  This modifier is the “delay_resample” value which 

prevents resampling in increments of sample steps.  For the current implementation, 

the samples are taken every one-hundredth of a second. 

There were three resample rules implemented in this research.  Rule 1 

triggers a resample with any parameter estimate convergence.  Rules 2 and 3 require 

parameter estimate convergence for a minimum of two and three parameter 

dimensions before resampling is triggered.  Each rule also enforces the minimum 

delay to prevent resampling to soon after the prior resample. 

Rule 1 is the default rule used.  It works well when a single parameter tends 

to converge faster than the others.  Additionally, this rule has shown good results 

when the initial current range estimate for a parameter is outside the actual value.  

The current estimate of that parameter will converge towards the edge of the current 

range estimate and trigger an expansion of the current range estimate centered on 

the value.  This moves it towards the actual parameter value.  Using, resample rules 

2 or 3 will needlessly cause a delay in the system convergence as the actual 

parameter is not within the current parameter samples.  Testing has shown that rule 

1 combined with an appropriate delay typically works well.  (Specific results 

covering the Duffing Oscillator are covered in Chapter 6.)  An alternate rule 4 was 

explored but not implemented.   Rule 4 was defined to explore the total derivative 

magnitude from equation (5-7). 
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5.4 Closing Remarks on EKF GRAPE 

The EKF framework formalizes the parameter tracking process.  These 

additions to the GRAPE framework are also applicable to the linear 

implementation.  The updated procedures enable GRAPE to either narrow the focus 

to converged values within a parameter range or expand the range in the appropriate 

direction to track parameters outside the current parameter range boundary.  Each 

rule defines the specific behavior when the MMAE model converges.  Convergence 

is determined from the parameter derivatives using a simple moving average 

window to filter the noise.  The system is tunable to match the desired performance 

goal for initial sampling, resampling and convergence criteria.  Chapter 6 explores 

the EKF framework using the Duffing oscillator.  
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CHAPTER 6  

Exploring the Duffing Oscillator using GRAPE 

This chapter applies the EKF GRAPE framework to the Duffing oscillator.  

There are many nonlinear oscillatory systems to consider for study.  The Duffing 

oscillator is commonly studied oscillator that adds a cubic stiffness term to the 

simple harmonic oscillator.  The Duffing oscillator was chosen because it has 

common mechanical analogies and is similar in form to the harmonic oscillator 

previously presented in Chapter 2 and simulated in section 4.4 using the spring-

mass-damper mechanical representation.  This chapter provides an overview of the 

duffing oscillator with some relevant research.  The specific form of the Duffing 

equation is presented along with the derivation of EKF filter model. A specific 

model is chosen from a wide range of coefficient possibilities.  This model is 

studied through the EKF GRAPE framework.  The results are discussed, and the 

justification is provided for the general GRAPE tuning statements of Chapter 5. 

6.1 Overview of the Duffing Oscillator 

The Duffing oscillator is a typical system used to study nonlinear dynamics.  

It was popularized and received its name from Georg Duffing a German engineer 

during the early twentieth century.  He produced several publications included one 

text [127] on his equation.  The Duffing oscillator has been used to model the 

following physical processes:  stiffening springs, beam buckling, nonlinear 
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electronic circuits along with several other applications in superconducting 

amplifiers and ionization waves in plasma.[128, 129] 

Kovacic and Brenna provide a thorough overview of the historical evolution 

the Duffing equation in Chapter 1 of [129].   The Duffing oscillator received 

sporadic focus until 1970.  Since then, journal paper titles including “Duffing” have 

steadily grown from 8 to 212 in 2009 (see Figure 1.4, pg 15 of [129]). 

The Duffing oscillator has come to describe an entire group of equations 

that add a cubic nonlinear stiffness term to the standard linear second-order 

harmonic differential equation.  Duffing’s original system of study was the second 

order vibration system that included linear viscous dampening, either free or forced 

harmonic vibration along with quadratic and cubic force terms.[129]  Today, the 

most common form of the Duffing equation is described by the following 

differential equation with the cubic stiffness term. 

  3 cosx x x x t          (6-1)

  
where the constants are defined as: 

  is the driving force amplitude, 
  is the driving force frequency, 
  is the damping,  is stiffness and 
  is nonlinearity in the restoring force.   

The system simplifies to a spring-mass-damper if  is zero.  The appearance 

of x3 changes the behavior of the system entirely.  A paraphrase of effects of x3 

is summarized below from [128]: 
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 an analytical solution is no longer available 
 superposition principle is no longer valid (linear combination of solutions does 

not provide a solution) 
 the equation has several qualitative behaviors related to limit cycles, sensitivity 

to initial conditions, strange attractor, fractal structures, bifurcation phenomena 
(left to the reader to further explore in [128]) 

 
6.2 Chosen form of Duffing Oscillator 

The simulations focus will be on small  (0    1) as the system becomes 

chaotic when  >1. 

 
6.3 EKF Model of Duffing Oscillator 

The chosen form of the Duffing oscillator is provided below, 

  3 sinmx cx kx x t        (6-2)

  
where m = mass, c = viscous damping, k is linear stiffness and  is the cubic 

stiffness term.  For purposes later shown, the input is represented as a general 

function,  ,f t , of frequency, , and time, t. 

  3 ,mx cx kx x f t         (6-3)

  
Dividing both sides of equation (6-3) by m provides the form used to derive the 

EKF models. 

          3 ,x c m x k m x m x m f t         (6-4)

  

The states are chosen as 1x x   and 2x x  ;  therefore, the state space 

representation is 
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with measurement of  

   11 0y x x   (6-6)

  
Equations f and h are defined as  

    
       

21
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2 1 12

xf x
f x

c m x k m x m xf x 
   

        
 (6-7)

  

   1h x x (6-8)

  
Per the continuous-discrete Extended Kalman Filter, Table 2-6, the Jacobians are 

      2
11 2

0 1

3
f f f

F
k m m x c mx x x 

    
             

 (6-9)

  

  
1 2

1 0 const.
h h h

H
x x x

   
       

 (6-10)

  
 

 
6.4 Range of Values Considered 

A general assumption is the mass m is 1.  Therefore, there are three 

coefficients of concern.  The EKF GRAPE framework is set up such that (1) = c, 

(2) = k and (3) = . The value of  is chosen to be less than one to prevent chaotic 

behavior.  With the constraint n , further constraints must be considered for c and 
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k to ensure the system to displays behavior that changes when any of the 

parameters.   

Both k and  are stiffness coefficients in equation (6-3).  Figure 6-1 

illustrates that ranges of  0.1 < k  1.0 and 0   < 1.0 are reasonable to consider 

when the desired effect is  different system behavior when either of the coefficients 

change value.  The coefficient c is also limited to values between 0 and 5 to ensure 

that the system is not overly damped.   

 

 
Figure 6-1 Contribution of kx and x3 terms 

 

Table 6-1 provides a summary of the values considered for study.  Each 

system was evaluated with  values from the set [0, 0.01, 0.09, 0.39, 0.69, 0.99].  

Figure 6-2 is sample plot from the evaluation of changing c with k =  0.5 and 
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 = 0.69.  Figure 6-3 shows the effect of the range of  values with c  =  0.1265 and 

k = 0.5.   

Table 6-1 Coefficient values considered for duffing equation 

m k c n 
 

(damping 
ratio) 

Damped 
Description 

1 2.5 0.63246 1.581 0.2 under 
1 2.5 2.21359 1.581 0.7 under 
1 2.5 3.16228 1.581 1 critically 
1 2.5 4.11096 1.581 1.3 over 
1 2.5 15.81139 1.581 5 over 

 

 
(a) x1, position

 
(b) x2, velocity 

Figure 6-2 Evaluating the effect of changing c 
 
 

 
(a) x1, position

 
(b) x2, velocity 

Figure 6-3 Evaluating the effect of changing c 
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6.4.1 Harmonic Excitation 

Through the study, the focus was narrowed to the final system with c = 

0.1265, k = 0.5 and  = 0.69.  Synthetic data generated from the following model. 

        21
3

2 1 12
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c m x k m x m xx
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                       





 (6-11)

  

 1y x v  (6-12)

  
where the process noise is of the form  0,w N r  and the measurement noise is of 

the form  0,v N q .  The characteristics of the final system are shown in Table 

6-2 and Figure 6-4. 

 

Table 6-2 Characteristics of final duffing oscillator system 
Coefficient (Characteristic) Value 

m (mass): 1 
c (viscous damping): 0.1265 
k (linear stiffness): 0.5 
beta (cubic nonlinear stiffness): 0.69 
gamma (driving amplitude): 1 
omega (driving frequency): 1 
q (process noise): 1.0 
r (measurement noise): 0.01 
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Figure 6-4 Chosen synthetic system 
 

6.4.2 Nonpersistent Excitation 

The ideal system for MMAE and other parameter estimation techniques is 

a system with output measurements and persistent input variation.  Since the input 

is known or measured, there is constant information from the residual calculation 

from each model.  This information is used by the MMAE approach to adjust the 

parameter estimate weights.  This is why an oscillator system is a good system to 

study.  For some systems, the input may become a constant steady state value uss or 
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zero.  For this case of the nonexistent (zero) input, the system achieves a steady-

state value defined by the static gain GS. 

  0SG u
m


    (6-13)

  
For the case of a constant input, uss the steady state result is simply the static gain 

multiplied by uss. 

    S ss ssG u u u
m


    (6-14)

  
Both values are not unique concerning an MMAE system with unknown parameters 

 = [c, k, ].  Each system can achieve this value.   

This means that there is no residual information for the MMAE process to 

adjust the weights and ultimately the parameter estimates.  This leads to two 

observations.  First, the system must converge within a time of varying input.  

Secondly, to verify parameter estimates during a period of unchanging input, some 

type of synthetic input must be used to generate information to update the MMAE 

estimates.  For the purpose of this research, two signals, the pulse and doublet are 

evaluated to update the MMAE estimates. 

Figure 6-5 provides a comparison of the pulse and doublet with the 

persistent sinusoidal.  Each signal is of the form  ,f t  with a constant 

amplitude  and a constant frequency .  Figure 6-6 and Figure 6-7 respectively 

provide the synthetic simulations of each. 
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Figure 6-5 Sine, pulse and doublet input with constant frequency() and 

amplitude () 

 
 

Figure 6-6 Pulse input synthetic data 
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Figure 6-7 Doublet input synthetic data 
 
 
6.5 Determining a General Configuration for EKF GRAPE 

EKF GRAPE simulations were performed on a number of system 

configurations.  Those simulations lead to a generalized approach using tuned 

values.  The values for the general approach of the EKF GRAPE for the Duffing 

oscillator is recorded in Table 6-3.  The following subsections show modifications 

to the tuned values to show why the values related to the simple moving average 

window, derivative convergence threshold and resample delay Table 6-3 were 

chosen.  Furthermore, the resample rules are demonstrated.  Each example provided 

in this section was performed on an SGBS simulation. 
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Table 6-3 General configuration of EKF GRAPE 

Model Coefficients 
Value/ 
Limits 

Initial Range 

m (mass): 1 known value 
c (viscous damping): (1) unknown parameter 1 
k (linear stiffness): (2) unknown parameter 2 
 (cubic nonlinear stiffness): (3) unknown parameter 3 
 (driving amplitude): 1 known value 
 (driving frequency): 1 known value 
P0 (intitial EKF covariance) 0.1I2x2 from tuning trials 
R (process noise) 0.01 from tuning trials 
Q (measurement noise) 0.1 from tuning trials 

Initial Conditions Value Notes 
range.start_time 0 initial start time 
range.sample_index 1 initial index 

0x̂   [1,1]T  

0P   P0I2x2 P0,SGBS=1e-3; P0,LHS=1e-2 

0θ̂     1 2
0 0
ˆ ˆ T

  
   

calculated as the midpoint of 
the initial range 

weights (MMAE) 1/num_trials calculated 
EKF GRAPE 

Characteristics 
Value Notes 

sample_type ‘SGBS’ or 
‘LHS’ 

refer to specific  
simulation for type 

num_trials 125 5 per parameter for SGBS 
40 for LHS 

limit.lower [0.1,0.001, 0] for [(1), (2), (3)] respectively 
limit.upper [10,10, 0.99]  
limit.smallest_percent 0.1  

range.min [0.5, 0.01, 0] 

ideally, most parameter ranges 
should span actual value (c 
chosen specifically to 
demonstrate tracking outside 
of range) 

range.max [5, 2.5, 0.99]  
resample.reduce 0.8  
resample.edge 0.1  
resample.enlarge 1.2  

Convergence Criteria Value Notes 
SMA_num 10  
SMA_flag_limit 15  

derv_limit 0.015 
generally [0.01, 0.02];  
0.015 or lower for LHS 

derv_limit_redux 0.95  
delay_resample 50 typically 200 for LHS 
resample_rule 1  
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6.5.1 Tuning the EKF Models 

There are three parameters used to tune the EKF models, R (process noise 

covariance), Q (measurement noise covariance) and P0 (initial state estimate 

covariance, typically initialized to a constant, p0, times the identity matrix as shown 

in equation (6-15)).  In general, these terms are matrices.  For the current system of 

study Q and R are scalar.  The values Q and R were determined experimentally by 

simulating combinations of Q and R to test the performance of the EKF models in 

the GRAPE algorithm.  These simulations covered both the SGBS and LHS 

sampling approaches.  Sample models were run at the values identified in Figure 

6-8.  The best (Q,R) sets for SGBS and LHS are recorded in Table 6-3. 

 0 0p I P (6-15)
  

 

Table 6-4 Approach for tuning EKF filters 
Component Approach 

R (process noise Covariance)  TQ E w w , measure of trust in model;  

decrease value to increase trust in EKF models 

Q (measurement noise covariance)  TR E v v , measure of trust in measurements; 

decrease value to increase trust in measurements 

P0 (initial state estimate covariance)
P0 = p0I2x2, measure of covariance of initial value; 
decrease value until 3 bounds decrease over 
simulations 
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Figure 6-8 EKF tuning process 

 

Positive and negative 3-sigma (3) boundaries are calculated by 

multiplying 3 times the square root of the diagonals of the state estimate covariance, 

P, at each time step. These 3 values should bound the state estimate errors, also 

called residuals.  The goal is to have an initial covariance such that the 3 bounds 

decreases over each sample region.  While this approach worked well for LHS, this 

process deviated slightly for the SGBS.  By decreasing P0 even further, the SGBS 

approach was found to track nonpersistent signals better.  This was not the case for 

LHS.  The models would diverge if P0 was set too low. 
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0,3 3i ii    P  

(a) relationship between 3 and P0 
   

 
3max  .75; therefore,  2

0 max3P   

from 0,3 3i ii    P  

(b) selecting 3 from results 
(SGBS run) 

Figure 6-9 Selecting P0 
 
6.5.2 Option to Use Prior State Estimate Covariance 

Another option was explored concerning the initial state estimate 

covariance, P0,i, for each sample region.  The standard approach resets each P0,i to 

P0 during the initialization of a resample.  This approach is the conservative option 

ignored the information available from the prior sample set.  It is also the option to 

use when the desired effect of P0 is required for the low values of P0 used to aid the 

system to rapidly converge for nonpersistent signals for SGBS. The new approach, 

added late in the research effort, assumes confidence in the prior sample set.  This 

second option uses the prior sample set final covariance, Pi-1,final, for the initial value 

for the covariance, P0,i, for the current resample set. 

There are subtle differences in the GRAPE response between the  confident 

and conservative settings for P0.  The most noticeable difference is illustrated in the 
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state estimate 3 bounds.  The confident approach provides a smooth almost 

constant 3 boundary after the first resample (see Figure 6-10(a)).  The 

conservative response has sharp changes in the 3 boundary as prior information 

about the covariance is ignored and reset to the initial value (see Figure 6-10(b)).  

The effect of this change is subtle is most cases.  The confident approach may 

reduce unnecessary resamples as shown in Figure 6-11.  Here the conservative 

approach, illustrated by Figure 6-11(b), adds an unnecessary resample at 

approximately 17 seconds when compared to the confident approach of Figure 

6-11(a). 

 

 (a) P0,i = Pfinal, i-1,  
confident in the prior estimate 

 

 (b) P0,i = P0, 
conservatively reset P0 

Figure 6-10 Effect of P0 on SGBS state estimate covariances 
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(a) P0,i = Pfinal, i-1,  
confident in the prior estimate 

 

(b) P0,i = P0, 
conservatively reset P0 

Figure 6-11 Effect of P0 on SGBS parameter estimates 
 
6.5.3 Combined Effect of Convergence Threshold and Delay 

The SMA derivative estimate is compared to a convergence threshold 

(derv_limit) for each time step.  If the value is met, then a flag 

(SMA_derv_within_limit) is set for that instance.  Once the present number of 

consecutive flags is reached (controlled by SMA_flag_limit), then parameter 

resample_flag is set. 

It is important for the derivative threshold value to be both attainable and 

low enough to prevent too frequent resampling.  This is illustrated in Figure 6-12.  

Here the derivative threshold was set to 0.1.  This value was too high.  The system 

resampled too often and would not properly converge. 
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Figure 6-12 System with frequent resampling (threshold to high) 

 
 The threshold, derv_limit, may also be set to low and needlessly 

delay a resample as illustrated in Figure 6-13.  Here the estimate for c has clearly 

converged around 2 seconds; however, the resample is not performed until 

approximately 14 seconds.  In this case, the boundary of the range for c is 

preventing it from approaching the true value.  Once a resample is processed, the 

system converges to the true value of c. 

 
Figure 6-13 System with infrequent resampling (threshold to low) 
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A delay was implemented to minimize the risk of resampling too often when 

the threshold derv_limit was set to high.  The delay value must be considered along 

with the desired response of the GRAPE system. A delay too high will needlessly 

delay resampling as shown in Figure 6-14.  In this case, the sampling is primarily 

driven by the delay.  Ideally, the derivative threshold is low enough to properly 

measure convergence, and the delay acts as a barrier to prevent the next resample 

from occurring too fast.   

Another factor was added to the implementation to make it more difficult 

to resample by reducing the threshold value after each resample.  The 

derv_limit_redux multiplier is multiplied to the derv_limit for after each resample.  

Ideally, derv_limit_redux should be near one.  For long run with many resamples, 

the value can reduce to an unattainable value. 

 
Figure 6-14 System with nearly fixed interval resampling 
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The ideal configuration is one that resamples when a parameter estimate 

converges but does not resample again until the system has had time to converge 

on another estimate.  A reasonable system is shown in Figure 6-15.  Here, the 

system resamples upon convergence.  The first resample moves the c range estimate 

as the true value of c was not within the original range.  The second resample is 

converges close to the true value of c.  The windows for k and  are now moved 

closer to their true values.  Subsequent resampling continue to move the estimates 

consistently closer to the true values.  There is one issue to note for the estimate of 

c.  The true value of c is near the lower limit for that parameter dimension.  The 

window size has also reached is lower width parameter.  The true value of c is at 

the lower end of that window. When a resample occurs, error is initially introduced 

as the weights of the MMAE process are all initialized to 1/(number of models).  

This causes the initial estimate to be in the center of the range.  The MMAE process 

will rapidly overcome this error. 

 
Figure 6-15 System with reasonable interval resampling 
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6.5.4 Resampling Rules 

Rule-based resampling determines the final decision to resample or not.  At 

the present time, there are three rules.  The rule number represents the required 

number of dimension resample flags to be set to trigger a system resample.  For the 

three-dimensional system implemented for the Duffing oscillator, the available 

rules are 1, 2 and 3.  Testing has shown that the starting point should be rule 1 

requiring just one dimension to converge.  Otherwise, the resample will likely be 

excessively delayed as shown in Figure 6-16.  For this case, both rule 2 and a delay 

of 5 seconds is used.  Resampling was excessively delayed until a second 

convergence flag was reached at approximately 14 seconds.  This prevented the c 

parameter from resampling and moving closer to its true value.  (Recall, the initial 

range of the parameter estimate for c did not cover its true value, see Table 6-3.)   

A better result is obtained from Rule 1 with a 5-second delay as displayed in Figure 

6-17. 

 

(a) parameter estimates

 

 (b) resample rule 2 
Figure 6-16 Rule 2 resampling 
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 (a) Parameter Estimates 

 

 
(b) Derivative Flags and Resample Rules 

 
Figure 6-17 Resampling with rule 1 
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6.6 Simulations 

Section 6.5 provides the discussion of an adequate set configuration options, 

summarized in Table 6-3, for executing EKF GRAPE on the Duffing oscillator 

system of Table 6-2.  The values of Table 6-3 were determined from qualitatively 

evaluating hundreds of simulations.  With the synthetic data that already includes a 

predefined set of noise, the results of specific configuration SGBS are deterministic.  

In other words, a particular simulation will result in the same results with the same 

settings.  For LHS the sampling is random.  Therefore, the simulations will not 

perform the same. 

The configuration of Table 6-3 is now demonstrated with results for both 

the SGBS and LHS sampling approaches for both persistent sinusoidal input along 

with the pulse and doublet inputs.  Recall, the standard input model for the 

nonlinear test was the Duffing oscillator system of equations (6-11) and (6-12) with 

the configuration of Table 6-2.  This system was demonstrated in Figure 6-4 for 

sinusoidal input, Figure 6-6 for the pulse input and Figure 6-7 for the doublet input.   

The results are presented in the following manner.  First, the results of 

persistent excitation are presented for both the SGBS and LHS sampling methods 

using a sinusoidal input signal.  Second, a pulse with the same frequency is 

discussed.  This is followed by the doublet input signal.  A summary of the 

referenced simulation figures is provided in Table 6-5.  Each representative 

simulation is present in three figures.  The first figure provides the state estimates 
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x̂ and the residuals with the 3 bounds.  The second figure provides the parameter 

estimates θ̂.  The parameter range boundaries are represented by the interval of the 

error bars at the initial sample location at t = 0 and each subsequent resample. All 

points of sampling are marked with a red x.  The third figure illustrates the 

parameter derivatives and the associated dimension resample flag based on the 

threshold derv_limit.  The third figure also shows the overall GRAPE resample flag 

per rule 1.  These results are presented with the conservative option of resetting Pi,0 

to P0 for each resample. 

Table 6-5 Simulation summary 
Input 
Signal 

Sampling 
Method 

Representative Simulation Figure 

sin(t) SGBS Figure 6-18 SGBS state estimates and residuals example 
sin(t) SGBS Figure 6-19 SGBS parameter estimates example 
sin(t) SGBS Figure 6-20 SGBS parameter derivatives and convergence flags 
sin(t) LHS Figure 6-21 LHS state estimates and residuals 
sin(t) LHS Figure 6-22 LHS parameter estimates 
sin(t) LHS Figure 6-23 LHS parameter derivatives and convergence flags 

pulse(t) SGBS Figure 6-24 SGBS state estimates and residuals 
pulse(t) SGBS Figure 6-25 SGBS parameter estimates 
pulse(t) SGBS Figure 6-26 SGBS parameter derivatives and convergence flags 
pulse(t) LHS Figure 6-27 LHS state estimates and residuals 
pulse(t) LHS Figure 6-28 LHS parameter estimates 
pulse(t) LHS Figure 6-29 LHS parameter derivatives and convergence flags 

doublet(t) SGBS Figure 6-30 SGBS state estimates and residuals 
doublet(t) SGBS Figure 6-31 SGBS parameter estimates 
doublet(t) SGBS Figure 6-32 SGBS parameter derivatives and convergence flags 
doublet(t) LHS Figure 6-33 LHS state estimates and residuals 
doublet(t) LHS Figure 6-34 LHS parameter estimates 
doublet(t) LHS Figure 6-35 Parameter derivatives and convergence flags 

 
6.6.1 Persistent Sinusoidal Input Simulations 

EKF GRAPE performed well for the persistent sinusoidal input and the 

configuration of Table 6-3.  With 125 models, 5 values for each parameter 
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dimension, SGBS tracks the true states very well.  SGBS takes longer to simulate 

but will converge close to the true value if enough models are used, and the EFK 

models are appropriately tuned.  The LHS will execute much faster directly 

proportional to the lower model count.  The LHS simulations used 40 total models 

rather than the 125 of SGBS.  LHS derivatives will converge much faster in the 

simulation due to the lower number of models.  Therefore, a lower threshold is 

used.  Additionally, a larger delay is set to prevent too frequent resampling from 

interfering with the convergence to the true values. 

For some rare LHS sample sets, the LHS approach will settle on a system 

that produces results with the parameters estimates significantly different from the 

true values (true values of parameters are outside the boundary of the range window 

for the parameter estimate).  In this case, the c estimate converges near the true 

value, and the k estimate is always high with the  estimate always low.  Initial 

evaluations of these differences point to the system similarity. 

The parameter space likely has systems that produce similar results.  The 

MMAE process itself uses the information of the residuals to estimate the states 

and parameter estimates.  There are far fewer samples in the LHS simulations.  

Therefore, the residuals are typically higher because the simulated models are 

potentially separated further from the true model.   Therefore, the LHS is more 

likely to converge on an alternate model that produces similar output for the same 

input than the much higher model count of the SGBS approach.  In the case of a 
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similar model, the state estimates will be accurate but the parameter estimates will 

not be correct. 

 

 
(a) state estimates 

 

 
(b) residuals and 3 bounds 

Figure 6-18 SGBS state estimates and residuals example 
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Figure 6-19 SGBS parameter estimates example 
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(a) parameter derivatives 

 

 
(b) sma derivative and resample flags 

Figure 6-20 SGBS parameter derivatives and convergence flags 
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(a) state estimates 

 

 
(b) residuals and 3 bounds 

Figure 6-21 LHS state estimates and residuals 
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Figure 6-22 LHS parameter estimates 
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(a) parameter derivatives 

 

 
(b) sma derivative and resample flags 

Figure 6-23 LHS parameter derivatives and convergence flags 
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6.6.2 Pulse Input Simulations 

The pulse signal was evaluated to see if it could be introduced when the 

input and output of the system are constant.  In this case, there is no information to 

update the models (see discussion of section 6.4.2 for further details).  A single 

positive pulse of the same frequency as the sinusoidal signal provides a very short 

window of residual information for the GRAPE algorithm to update the models.  

For the SGBS, the models can be tuned to rapidly converge to the true estimates 

with an artificially very low P0.  However, the information window is not long 

enough to converge to the true values.  Furthermore, there is no additional 

information from the residuals after the effect of the pulse is over and the estimate 

will drift.  LHS produces similar results.  When the pulse signal is present, the 

GRAPE algorithm approaches an estimate towards the true system value.  

However, the information is not present long enough for the GRAPE method to 

converge on the true states. 
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(a) state estimates 

 

 
(b) residuals and 3 bounds 

Figure 6-24 SGBS state estimates and residuals 
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Figure 6-25 SGBS parameter estimates 
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(a) parameter derivatives 

 
 

 
(b) sma derivative and resample flags 

Figure 6-26 SGBS parameter derivatives and convergence flags 
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(a) state estimates 

 
 

 
(b) residuals and 3 bounds 

Figure 6-27 LHS state estimates and residuals 
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Figure 6-28 LHS parameter estimates 
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(a) parameter derivatives 
 

 
(b) sma derivative and resample flags 

Figure 6-29 LHS parameter derivatives and convergence flags 



www.manaraa.com

 

174 
 

This document does not contain technology or Technical Data controlled under either the U.S. International Traffic in 
Arms Regulations or the U.S. Export Administration Regulations. 

6.6.3 Doublet Input Simulations 

The double provides an information window twice as long as the pulse.  

Therefore, both the SGBS and the LHS sampling methods do a better job of 

converging to the true system parameters.  When the double signal is not present, 

there is no further residual information available for the GRAPE algorithm to use.  

Ultimately, inserting an artificial signal when a system has a steady state constant 

input and corresponding output will allow the GRAPE algorithm to properly update 

the parameter estimates as long as the information window is long enough for the 

estimates to converge.  The duration of the required artificial input is dependent on 

the system parameters that were set to define the desired performance.  For the 

configuration of Table 6-3, a two cycle doublet should suffice for a parameter 

estimate update.  However, the system can drift after the artificial signal subsides.  

Alternatively, the GRAPE algorithm could be modified to recognize a steady-state 

input/output situation and halt all processing until more information is available.  

This potential modification is left for future effort. 



www.manaraa.com

 

175 
 

This document does not contain technology or Technical Data controlled under either the U.S. International Traffic in 
Arms Regulations or the U.S. Export Administration Regulations. 

 

 
(a) state estimates 

 

 
(b) residuals and 3 bounds 

Figure 6-30 SGBS state estimates and residuals 
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Figure 6-31 SGBS parameter estimates 
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(a) parameter derivatives 

 
 

 
(b) sma derivative and resample flags 

Figure 6-32 SGBS parameter derivatives and convergence flags 
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(a) state estimates 

 
 

 
(b) residuals and 3 bounds 

Figure 6-33 LHS state estimates and residuals 
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Figure 6-34 LHS parameter estimates 
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(a) parameter derivatives 

 

 
(b) sma derivative and resample flags 

Figure 6-35 Parameter derivatives and convergence flags 
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6.6.4 Simulation Summary 

The SGBS approach is considered the baseline.  SGBS guarantees accurate 

results as long as there are enough stratum and the EKF filters have been properly 

tuned.  In general, the SGBS will provide the best mean squared error when 

comparison to the true values store when the simulated input/output data was 

generated.  SGBS provides the best final parameter estimate and error.  The 

accuracy comes at the cost of computation time.  To close out the SGBS evaluation, 

a study was performed using the hypothesis model size of [33, 43, 53, 63, 73, 83, 93, 

103] for the 3 parameter space of the Duffing oscillator under consideration.  There 

were only minor improvements after 53 (125) models.  The diminishing returns do 

not justify a higher model count for the Duffing oscillator system considered.  This 

conclusion is only valid for the of Duffing oscillator with characteristics of Table 

6-2, and the parameter space and the ranges of Table 6-3.  Figure 6-36 provides a 

summary of the effect of increasing the number of models.  The number of 

resamples stabilizes at 125 samples.  The mean squared error (comparing to the 

stored true values) levels out at 125 samples with only minor improvement for 

higher sample counts.  The parameter estimates also see little improvement when 

the model count is increased as shown in the parameter values and the relative error.  

The best measure of relative errors is error as a percent of the parameter dimension 

limit.  This compares the error to the total size of the parameter space considered. 
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(a) SGBS survey results 

 

 
(b) relative error 

Figure 6-36 Parameter derivatives and convergence flags 
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6.7 Summary of GRAPE Simulations using the Duffing Oscillator 

The nonlinear EKF GRAPE framework of chapter 5 was applied to the 

Duffing oscillator system to estimate the parameters for damping, c, linear stiffness, 

k, and nonlinear cubic stiffness, .  An appropriate set of parameters was chosen 

for the true system with parameter and measurement noise introduced to generate 

a synthetic system with input and output values.  Many simulations were executed 

to characterize the system, tune the EKF models and determine appropriate 

parameter options for both the SGBS and LHS sampling methods.  The SGBS 

approach will converge close to the true parameter values as long as enough models 

are used.  The model count is the product of the number of strata desired for each 

dimension.  The LHS approach uses a much lower model count and will generally 

produce similar results.  However, the lower model count of the LHS approach 

results in models potentially further away from the true values.  In general, this 

causes the residual values to be higher.  As a result, the LHS GRAPE approach may 

converge on a model that produces similar results with different parameters.  

Therefore, caution must be taken to ensure the LHS approach is tuned 

appropriately.  Nonpersistent signals were evaluated to determine if a short pulse 

or doublet would provide sufficient residual information to update a parameter 

estimate.  The simulation results suggest that the approach is feasible for a doublet 

as long as the estimate converges quickly in respect to the duration of the doublet.  

For the configuration explore, a two cycle double should suffice.   
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CHAPTER 7  

Summary and Closing Remarks 

7.1 Summary of Research Achievements 

This research effort has concluded with the development of a new 

framework to monitor system health by concurrently estimating the unknown 

system parameters along with the state estimates.  The framework is called GRide-

based Adaptive Parameter Estimation (GRAPE).  This new approach is a derivative 

of multiple-model adaptive estimation (MMAE).  GRAPE is initially implemented 

in a linear framework using simple Kalman filter models.  A more generalized 

GRAPE formulation is presented using extended Kalman filter (EKF) models to 

represent nonlinear systems.  GRAPE can handle both time invariant and time 

varying systems. 

The primary contribution of this research is three parts.  The first part is the 

adaptation of MMAE to a formalized framework that supports system health 

monitoring.  In this framework, each parameter dimension is treated independently.  

The overall limits and range boundaries for each dimension can be set to values that 

match the chosen FDD approach. 

The second research contribution is the way GRAPE handles resampling.  

Literature has shown that previous research efforts have focused on using 

predefined banks of filter models.  The GRAPE approach samples and resamples 

from the parameter space according to the desired FDD goals.  Each resample 
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model set is newly generated, not carrying any prior models forward.  The range of 

the new models depends on convergence location of the prior sample set and the 

GRAPE configuration.  Information from the covariance can be store for use during 

the resampling initialization. 

The third contribution is sampling approach itself.  GRAPE provides two 

methods to sample the parameter space.  The selected grid-based sampling 

approach is similar to prior methods presented in literature in that the strata are 

uniformly divided according to the desired number of models.  This approach 

converges well as long as the number of stratum is sufficient to produce the desired 

accuracy.  The drawback of the SGBS approach is the number of models required 

is the product of the number of strata for each dimension.  The Latin Hypercube 

Sampling approach was introduced to determine the locations of models and 

minimize the model count required.  This reduces the computational complexity.  

The LHS sampling approach works well in most cases.  However, the LHS 

approach can converge on similar model combinations producing errors in the 

parameter estimates.  This is due to the sparser spacing of the LHS models and 

higher residual values.  These higher residual values allow the MMAE process to 

converge on parameters that produce similar state estimates.  Care must be taken to 

ensure that LHS is adjusted through the GRAPE configuration to produce the 

desired results. 
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GRAPE can be tuned to match the desired performance goals for initial 

sampling, resampling and convergence criteria.  The method will narrow its focus 

on progressively smaller dimensional ranges until a preset lower width limit is 

reached.  Additionally, GRAPE will expand each dimensional window as 

appropriate to track parameters outside of the current range boundaries. 

The GRAPE framework has been demonstrated on both linear and nonlinear 

systems.  The linear GRAPE framework was performed on the simple-spring-mass 

damper system for the estimation of the damping coefficient and spring stiffness 

coefficient.  The nonlinear GRAPE framework was performed on the Duffing 

oscillator which adds a cubic stiffness term to the harmonic equation for the spring-

mass-damper system.  The linear framework executes much faster for the same 

model counts as the equivalent nonlinear framework.  The linear models are 

typically discrete-time Kalman filters (KF) while the nonlinear models are 

continuous-discrete extended Kalman filters (EKF).  The linear discrete-time KFs 

are simpler and are evaluated with simple matrix multiplication techniques to 

calculate the next result.  The EKFs require the evaluation of Jacobians and 

integration using an RK4 solver such as the MATLAB ode series of functions.  

7.2 Future Work 

This research concludes with a working framework to perform FDD using 

GRAPE.  There are many areas to direct future research.  Table 7-1 provides a 

summary of potential future work in this research area. 
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Table 7-1 Summary of potential future work/modifications to GRAPE 
No. Description 
1 Incorporate GMMAE 
2 adjust the initial weights when a minimum window is near the limit for a 

dimension to correct the initial error introduced 
3 Halt resampling when input/output have reached steady state 
4 Add forced resample coupled with double-cycle doublet to resample 

during steady-state input/output 
5 Prevent resampling when all dimensions are within the center range of 

the smallest width 
6 Investigate GRAPE response to alternate input signals 
7 Investigate system similarity and relationship to LHS model spacing to 

identify when residuals are high enough to allow MMAE to diverge from 
true value 

8 Fully implement hybrid SGBS/LHS sampling 
9 Expand for concurrent GRAPE and Neural Network fault signature 

identification of sensor failures 
10 Implement GRAPE on a physical system with real-time tests 

 
The first identified area is to implement the concepts of generalized MMAE 

(GMMAE) into GRAPE. The core to GRAPE is MMAE.  GMMAE improves the 

likelihood function used to update the MMAE weights.  It uses the correlation 

between measurements by using the past history of the residuals.  The current 

GRAPE algorithm already stores the residuals.  It is only a matter of implementing 

GMMAE to update the core MMAE process.  MMAE should improve the rate of 

convergence according to research in [61], [62], [63] and [64]. 

The second area to improve GRAPE is the performance near the upper and 

lower limits of an individual parameter space.  Currently, the region is controlled 

by a minimum width.  Within the regions [a,b] and [j,k] of Figure 5-7, the center of 

the resample region is not the last estimate.  This causes an initial error as shown in 
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the third sample point of Figure 7-1.  GRAPE overcomes this error over time.  

However, skewing the initial MMAE weights at a resample to produce an initial 

estimate at the last estimate will improve the performance for this case. 

 
Figure 7-1 System with reasonable interval resampling 

 

The third area to improve GRAPE is to halt resampling when the input and 

output have become static.  (Section 6.4.2 discusses the issues with nonpersistent 

excitation.)  With no input or constant input, the system is stable, and there is no 

information in the residuals.  Therefore, there is nothing for the MMAE process to 

use to update the models.  Therefore, the input/output pair should be examined for 

static conditions in which model updates should be halted.  This will maintain the 

last estimate and prevent estimate drift. 

The fourth area for improvement is to add a formal forced resample feature.  

This feature was used for debugging purposes while developing GRAPE.  It is a 

valuable tool that should be formalized in the actual GRAPE algorithm.  Combining 

a forced resample with the research already performed on the nonpersistent doublet 
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signal would be a valuable tool to see if the system has changed while the input is 

static.  A double doublet synthetic input should allow GRAPE to re-identify the 

system parameters.  The forced resample would coincide with the synthetic input. 

The fifth area for improvement is to prevent resampling when all 

dimensional current estimate ranges are both at the minimum width values, and the 

current estimate is also within the center range region.  Identifying this condition 

and setting a flag would help prevent the needless resampling that is purely 

controlled by the delay feature after the system has converged near the true value 

as illustrated in Figure 7-2 starting at approximately 22 seconds. 

 
Figure 7-2 Resampling continues after final convergence 

 

The sixth identified area is for future research to investigate alternative input 

signals.  This research focused on three signals, the persistent sinusoidal input, 

along with the pulse and doublet inputs followed by no input.  There is a multitude 

of other signals to test and study.  Additional input signals should be explored.  Two 

such inputs are a combined multiple sinusoidal signal in Figure 7-3(a) and a random 

amplitude with random duration signal of Figure 7-3(b).  The Figure 7-3(a) is of 
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particular interest because it can be represented as a cubic sine function or simple 

sine functions according to the following trigonometric identity of equation (7-1).  

Studying this signal would give insight to the behavior of similar input signals.  It 

is hypothesized that similar responses are what cause the rare cases where LHS 

sampling converges to the wrong system parameters. 

      3 3sin sin 3
sin

4

t t
t


  (7-1)

  
 

 
(a) alternative sinusoidal input 

   sin sint t      
 

 
(b) random amplitude and duration signal generator of predefined 

probability 
[130] (test of n_random_levels 2.3.2 (pg 40-45)) 

Figure 7-3 Alternate input signals 
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The seventh identified area of research is to investigate model similarity and 

the relationship to sparse LHS sampling and the cases where LHS sampling will 

converge on a similar model that is away from the true model.  As discussed in 

6.6.1, this issue is hypothesized to arise from the sparsely populated models of LHS 

generating higher residuals.  The higher residuals allow MMAE to converge on 

alternate models with similar input/output relationships. 

The eighth identified potential improvement is to fully implement the 

hybrid SGBS/LHS sampling approach.  In this hybrid approach, the initial samples 

would be performed over a wider window using LHS.  Once the system has 

converged to a predefined percentage of the parameter space limits, the next 

resample would switch to an SGBS approach.  The SGBS would continue to narrow 

its focus.  By having uniformly spaced strata only on smaller range windows, the 

number of models for SGBS could be reduced.  Additionally, the SGBS sampling 

will better track towards the correct parameter when the sparsely placed models of 

LHS has converged in the wrong region.  This should correct the rare cases where 

the sparse LHS samples converge on a similar model that is outside the parameter 

range of the true mode. 

The ninth identified area of future work is to implement GRAPE on a 

physical system.  Simulations are a method of study and development.  However, 

an actual system would test the capabilities of GRAPE and provide insight for 

future required research. 
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The tenth and final area for future research is the area of using a concurrent 

neural network approach to identify additive sensor fault signatures.  This is a 

hybrid analysis identifying nonlinear fault signatures due to sensor failure using 

neural networks in conjunction with the GRAPE methods.  The approach would 

recognize the fault signature and subtract the resulting output from the measured 

output to allow GRAPE to continue to estimate the system parameters.  The learned 

fault could be compared to other faults for identification and reporting.  A 

preliminary literature review was begun on this subject following two main sources, 

[131, 132].  The ultimate approach to this future research is a hybrid method to 

combine the GRAPE analysis with neural networks to concurrently estimate the 

states and system parameters and evaluate potential nonlinear fault signals. 

7.3 Closing Remarks 

MMAE methods are subjects of renewed interest with the capability of 

modern computing systems.  GRAPE expands on MMAE with the hypothesis that 

sample models can be applied and resampled without relying on a predefined set of 

models.  GRAPE simply resamples in the region of the prior parameter estimate 

using one of two methods: the SGBS approach or the LHS approach.  GRAPE has 

generated a framework for FDD.  Much potential future work has been identified 

to expand the capabilities of GRAPE further.  The GRAPE algorithm has the 

versatility for use in wide range of applications outside of the framework for FDD.  

Potential applications are tracking, system identification and adaptive control.
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Appendix A 

Acronyms 
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Table A-1 List of acronyms used 
Acronym Description 

ACM Association for Computing Machinery 
AIAA American Institute of Aeronautics and Astronautics 
AEM abnormal event management 
ASME American Society of Mechanical Engineers 
ANOVA Analysis of variance 
CLT Central Limit Theorem 
DGPS differential Global Positioning System 
EKF Extended Kalman Filter 
ENKF Ensemble Kalman Filter 
FDD Fault Detection and Diagnosis 
FTC Fault Tolerant Control 
GLR Generalized Likelihood Ratio 
GMMAE generalized multiple-model adaptive estimation 
GPS Global Positioning System 
GRAPE Grid-Based Adaptive Parameter Estimation 
GS Static Gain 
I/O Input/Output 
IEEE Institute of Electrical and Electronics Engineers 
IID Independent and Independently Distributed 
IMM Interactive Multiple Model 
INS Inertial Navigation System 
KF Kalman Filter 
LLN Law of Large Numbers 
MAP Maximum A Posteriori Estimation 
MBMMAE Maybeck Moving-Bank Multiple-Model Adaptive Estimation 
MDOF Multiple Degree of Freedom 
MLE maximum likelihood estimation 
MMAC Multiple-Model Adaptive Control 
MMAE Multiple-Model Adaptive Estimator 
MMSE  minimized mean square error 
MSE mean squared error 
N(,Q) Normal (Gaussian) distribution with mean mu and variance Q 
N/A Not Applicable 
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Table A-1 List of acronyms used (continued) 
ODE Ordinary Differential Equation 

RK4 
4th Order Runge-Kutta (variable step size ordinary differential 
equation solver) 

SDOF Single Degree of Freedom 
SGBS Selected Grid-Based Stratification 
SKFB Standard Kalman Filter Bank 
SMA Simple Moving Average 
UAV unmanned aerial vehicle 
UKF Unscented Kalman Filter 
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